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The sensing, interpreting, and designing of movement for interacting with computing 

systems could allow machines greater capacity to interpret the actions of users to decipher 

user intention, as well as to communicate personalized, nuanced messages to meet 

individualized user needs, emulating conversation between humans. Harnessing the power of 

human movement as a medium for communication in the context of technology would have 

applications in the design of more sensitive assistive technologies, more perceptive smart 

homes, and more socially capable robots and conversational virtual characters. In order to 

realize this vision, we must improve our understanding of how humans imbue and extract 

meaning in and from body movement so that we can program computers to do the same. 

Traditional linguistic and cognitive science approaches to interpreting meaning from 

movement tend to consider shapes of specific, culturally defined gestures, timing of gestures 
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with speech, and spatial referencing of deictic gestures (pointing). Interfaces between 

humans and computers echo this line of reasoning with one-to-one associations of 

mechanically specific movements and deictic gestures dominating the design of movement-

based interactions. Execution of such gestures, even when they are intuitive, must be 

performed quite intentionally, but we can see from the literature in the cognitive sciences that 

non-verbal communication and interpretation are performed at non-conscious levels of 

processing. In order to capture emotional state and intention communicated non-consciously 

through movement, I suggest we look to methodology from the field of dance. 

The studies of choreography and Laban Movement Analysis in the dance discipline 

offer systems for interpreting meaning from a person’s physical movements based on quality 

and context that can be generalized to establish a lexicon of detectable, expressive qualities 

in human movement that should inform the design of gestural interfaces, both on and off the 

screen. In this paper, we conduct a series of pilot studies to assess the relevance of the Laban 

Effort system for classifying movement quality to the design of gestural interfaces. By 

conducting surveys in which human, non-expert participants label the movements of other 

humans with Laban Efforts and emotional interpretations, we determine that humans can 

recognize at least a subset of the Laban Efforts with a reasonable degree of reliability. 

Moreover, humans are likely to non-consciously perform these movement qualities when 

engaged in emotionally charged conversation and expression. We complete this research by 

drawing connections between several of the Laban Efforts and consistently interpreted and 

experienced emotional intentions. Future work will strengthen associations between the 

qualities and their emotional meanings to provide a framework for their use in the design of 

gestural interfaces. 
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!
INTRODUCTION 

 
In Western society, as the presence of technology in everyday lives has increased, we 

observe a need for more intuitive human-computer interfaces. Between desktop and laptop 

computers, smart phones, and interactive systems in transportation, retail, and museums, 

humans today spend almost as much time interacting with technology as with other humans. 

Although the capabilities and availability of computing systems have grown significantly in 

the past few decades, we have not yet observed a paradigmatic shift in how we interact with 

them. Rather, we have seen incremental advancements of the same ideas that prevailed in the 

1980’s: we point to and click on graphical objects in menus, push buttons, and type strings of 

text to interact with computers. Despite the addition of multiple pointers in touch screens and 

the use of speech recognition in some systems, only the hands, eyes, and, occasionally, aural 

system are considered as participants in interactions, leaving computer users disembodied 

and incapacitated. Contributing to mounting frustration, perception and interpretation are left 

entirely to the human user: the human tries to effectively communicate requests, and the 

computer responds with a predetermined output for the human to interpret.  

What would a more satisfying interaction with technology look like? What would be 

the goal? Interface pioneer Douglas Engelbart suggests that the goal should be to “augment 

the human intellect.” Human-computer interaction research Bilge Mutlu adds the goal of 

“delivering information at the periphery of attention.” An additional goal might be to design 

emotional experiences for the user. Each of these objectives requires the development of 

bidirectional interpretation and sensitivity. Computers must be taught to interpret the 

intentions of a user and to deliver user-centered responses through multiple modalities, 

sharing the responsibility of communication with the human user as two humans do in 
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conversation. With the development of more robust processing power in the past few years, 

we have observed a shift toward more intelligent systems that make recommendations to the 

user through the implementation of machine learning algorithms, but we are still a long way 

away from the kind of insightful surprises that humans can offer each other in conversation. 

The field of human-computer interaction studies the ways in which humans interact 

with computers and methods for designing better systems with high satisfaction and ease of 

use. Unlike humans, computers do not possess inherent modalities for interaction. To achieve 

the bidirectional interpretation described above, it will be useful to consider multiple sensory 

modalities. This is one of the major challenges in human-computer interaction– building and 

integrating modalities from scratch. In order to do so, we must quantify complex human 

behavior in a way that can be reliably interpreted by computers. But which modalities should 

we consider? And how will we interpret communications through these modalities? We will 

look to interactions between humans for insights. 

Consider the cues available to you in an in-person conversation with another 

individual. An obvious level of the interaction is the content of words. Beyond that, we may 

interpret meaning in tone and inflection of a person’s voice, facial expressions, and body 

language (Vinciarelli 1). The most difficult of these to quantify and interpret is probably 

body language, which includes body movements and posture (Riggio 1). You may have read 

magazine articles on interpreting body language in the context of dating. For example, if a 

person lifts his or her shoulder and ‘cocks [his/her] head to the side’, perhaps that means they 

are interested in you (Drapkin 1). Such specific, explicit interpretations of body movements 

and posture are unreliable at best, but there is evidence to suggest that the physical state of a 

person’s body is communicative and meaningful in conversation. 
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A classic example of the study of body language in conversation is the study of 

mirroring behaviors, in which individuals non-consciously mimic the physical mannerisms of 

others in conversation (Chartrand 1). Chartrand and collaborators conclude from a 1999 

experiment that this imitation arises from the mere perception of the behavior in others and 

that it significantly “increases the liking between interaction partners” (Chartrand 1). 

Research like this suggests that physical cues act as a fundamental element of 

communication, influencing the content and outcome of interactions between humans. 

Extending the hypothesis to cover more specific interpretations of meaning, 

Rosenthal and Ambady found in their 1993 study on thin-slices of behavior that observers 

were able to accurately predict the effectiveness of college teachers based on short video 

clips (under 30 seconds) (Ambady 1). Predictions from short slices of behavior matched 

evaluations of the teachers at the end of a semester (Ambady 1). A body of research has 

followed confirming that humans are able to predict the nature of relationships and the 

intentions of individuals based on thin slices of behavior, with or without words. This 

interpretation is deeply entangled with biases depending on social context and the appearance 

of a moving body, as discussed in the Scope of this Investigation section of this paper. 

Nevertheless, studies in this vein suggest that humans of different races and backgrounds are 

able to quickly interpret intentionality from physical cues in interactions. 

Even more strikingly, research in perceptual causality suggests that the interpretation 

of visual cues like motion occurs at the perceptual level and is not a purely cognitive process 

(Scholl 305). This means that the interpretation of intentionality from movement is at least 

somewhat instinctual and hard-wired into the brain. It may also shed light on the difficulty of 

harnessing the modality of body movements with technology; it is difficult to determine the 



! 15!

nature of interpretation that occurs unconsciously. Although the human brain is more adept at 

interpreting meaning from complex systems of variables, it is reasonable to suggest that a 

computing system could be developed to emulate human extraction of meaning from 

movement to augment human-computer interactions with an additional modality. 

There is a wealth of evidence in the cognitive and neurological sciences that 

movement is an important aspect of how humans communicate with one another, but how 

can we decode this communication so that it can be considered in human-computer 

interaction? Since the mid-20th century, researchers have approached this problem from a 

linguistic perspective, building systems for classifying and interpreting gestures as units of 

language. This results in mostly form-based and direction-based gestural interactions, but 

what about all of the meaning encoded in a gesture that is independent of its shape? Recently, 

research in human-computer interaction has begun to consider the perspective offered by the 

field of dance, an art form that relies upon sequences of body movements to convey 

relationships and ideas. The studies of choreography and Laban Movement Analysis offer 

systems for interpreting meaning from a person’s physical movements based on quality and 

context that can be generalized to establish a lexicon of detectable, expressive qualities in 

human movement that can enhance communication and interpretation on both sides of 

gestural interfaces. 

In this project, we evaluate a specific set of movement qualities outlined in the dance 

literature – the Laban Action Drive Efforts – as a potential catalog of movement qualities to 

be used in human-computer interaction. Is the Laban Effort system a useful way of 

classifying and interpreting conversational gestures for the design of human-computer 

interfaces? To answer this question, we use a set of pilot studies to assess the following: 
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1. Can people without any formal dance/movement training identify the Laban Efforts 

in another person’s movement?  

 If not, it is unlikely that humans rely upon these qualities for interpreting the 

movements of others, thus the Laban Effort system is unlikely to provide a system for 

understanding user intention or communication system intention to a user. 

2. Are the Laban Efforts present in non-performative expressive movements? 

 If not, the Laban Effort system is unlikely to aid gestural interfaces in 

interpreting the emotional state or intention of a user. 

3. Is there a correlative relationship between certain Laban Effort qualities and a 

mover’s emotional state or intentions? 

 If not, this system is unlikely to provide useful classifications of a user’s 

movements for the purposes of interpreting intention or emotional state. It could still 

provide an additional medium for gestural interface design beyond the existing media 

of form and directionality, but the ability of that medium to augment the interaction 

toward the goals discussed above will be limited. 

In this thesis, we provide an overview of the history and motivations for the study of 

movement for the field of human-computer interaction, as well as background information on 

dance systems for interpreting expressed meaning from movement. We explore the potential 

applications of classifying movement qualities, as well as precedents from the field. Then, we 

outline a series of three pilot studies designed to address the above questions, concluding that 

the Laban Effort system may in fact provide a medium for the design of more satisfying, 

powerful gestural interfaces. 
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BACKGROUND 

History of Human-Computer Interaction 

Although the popularization of gestural interfaces in technology is a recent 

phenomenon, movement as a medium for communicating with computers is deeply ingrained 

in the history and development of most of the interfaces we see today. In the following 

overview, we highlight a few examples of gesture and movement as communicators in the 

history of the field of human-computer interaction. 

Direct manipulation interfaces, in which a user manipulates graphical objects on a 

screen using a cursor, are the dominant paradigm for human-computer interaction. Between 

1949 and 1952, the light pen was invented for users to interact with computers by pointing to 

objects and drawing directly on the screen (English 1). The first known instance of a 

completely graphical user interface−Sketchpad−was created by Ivan Sutherland in 1963. 

Sketchpad allowed a user to perform actions on objects on the screen with a light pen, 

“including grabbing objects, moving them, changing size, and using constraints” (Myers 2). 

It was in 1965 that Douglas Engelbart− famous for his goal to “augment the human 

intellect”− and his team of researchers at Stanford created the mouse/pointer, which has 

dominated personal computing interfaces since then (Myers 4). Both the mouse and light pen 

are examples of interface modalities that interpret the input of a user’s hand movements to 

trigger commands for a computer to execute. Both can be seen as implementations of deictic 

(pointing) gestural communication, one of the earliest communicative behaviors observed in 

infants’ development. 

The 1960’s also saw the earliest implementations of gesture recognition systems and 

touch screens. In 1964, Tom Ellis’s GRAIL (for the Rand Tablet) recognized movements of a 
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light pen to interpret hand-written characters and Teitelman created the first trainable gesture 

recognition system (Myers 4). In 1965, E.A. Johnson published the first paper on capacitive 

touch screens, which have enabled the development of modern interfaces with more complex 

movements than the deictic gesturing of the mouse (Ion 2). Only recently have similar 

modalities for user input that enable the inclusion of more complex gestural behavior begun 

to emerge in consumer markets.  

Up to this point, we have considered movement as a medium for users to 

communicate commands to computers, but we have not explored movement as a medium for 

computers to communicate information to users. As early as the creation of direct 

manipulation interfaces, graphical objects were used as signifiers for scripts containing 

commands for a computer, but it was not until 1975 that David Canfield Smith referred to 

such objects as “icons” (Myers 4). Smith popularized the term in his work at Xerox in the lab 

that was also responsible for WYSIWYG (What You See Is What You Get), modeless 

interaction, and the desktop metaphor (Myers 4). This era of development at Xerox PARC 

labs marks a shift toward more conversational, user-centered interfaces intended to make 

computers accessible to everyone. With graphics and end-products rendered to the screen 

rather than code, designers were able to create more user-friendly signifiers, like Bill 

Atkinson’s famous marching ant pattern to indicate selection (Cook 79). Since then, we have 

seen movement used as a signifier of icon selection or actions that need to be taken by the 

user. 

The ACM Special Interest Group on Computer-Human Interaction (SIGCHI) was 

established in 1982 to encourage user-focused research in interface design, fostering 

collaboration between the fields of computer science, ergonomics, and cognitive psychology 
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(Roussel 1). With regular meetings and publications, the organization aimed to develop “a 

science of design seeking to understand and support people interacting with and through 

technology” (Roussel 1). In the mid-1980’s, Microsoft Windows and the Apple Macintosh 

brought the desktop paradigm and WIMP (Windows Icons Menus Pointers) to consumer 

markets. The design of interfaces during this time aimed toward “walk-up and use interfaces” 

focusing on intuitive interactions that were consistent across systems so that novice users 

could more easily access computing technology (Roussel 1).  

In 1983, Richard Bolt’s Put That There marked the first multi-modal user interface. It 

used a space-sensing cube to read human deictic gestures in combination with voice 

commands to manipulate graphical objects on a screen (Bolt 2-4). Though commands were 

limited to moving and manipulating objects on a screen, the project is a landmark of human-

computer interaction as it combines gestural and verbal communication just like human-to-

human conversation. In the same year, Myron Kreuger published the book Artificial Reality 

reporting his work on artificial reality lab VIDEOPLACE. VIDEOPLACE was a sort of 

shadow world, in which silhouettes of different users could be rescaled to interact with one 

another through gesture (MediaTube). The system tracked hands, fingers, and other body 

parts to recognize movements and produce appropriate graphical and auditory output, more 

or less obeying (though augmenting) the physics of the natural realm (Krueger 1). This is one 

of the earliest systems that successfully facilitated humans interacting with other humans 

through technology in a way that would not otherwise be possible (MediaTube). It marks a 

shift in our thinking about computers as sophisticated calculators and word processing 

devices toward media for new and satisfying human experiences. 
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By the early 1990’s, personal computers had gained a popular presence in homes, but 

daily usage was still challenging and often unsatisfying. Some designers began to consider 

intelligent interfaces that would use artificial intelligence to better interpret user actions 

(Roussel 2). Other designers turned to participatory methods that involved users in the 

process of creating interfaces (Roussel 2). New design frameworks like situated action, 

distributed cognition and activity theory also emerged as interface creators began to see user 

actions as part of a system (Roussel 2). 

In 2016, we stand at the precipice of the integration of design frameworks and 

approaches that have been separate for the past few decades. Fast computing systems and 

network communication have made way for the popularization of machine learning 

techniques. Connectivity and globalization made possible by the development of internet 

infrastructure and smart computing devices have increased the relevance of social 

contextualization of user actions. The availability of sensors in smart devices has opened up 

the potential for new interface modalities. Simultaneously, a shift toward holistic thinking 

about human health and developments in neurological and cognitive sciences are driving 

interest in embodied interfaces.  

 The field of human-computer interaction is now uniquely positioned to realize visions 

that have been simmering since the earliest days of computing. The goal of creating more 

satisfying, natural interactions between humans and technology can finally be approached by 

emulating satisfying, natural interactions between humans. As we have discussed, seamless 

communication between humans is enhanced by cues delivered through posture and gesture, 

and work is needed to integrate these modalities into everyday human-computer interfaces. 

The medium of movement has potential for both interpreting a user’s intentions and 
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communicating information back to a user. If we could reliably and explicitly connect 

meaning to movements, we could create surprisingly natural interfaces using non-conscious 

or intuitive communicative gestures as both input and output. That stated, the challenge of 

extracting meaning from movement is complex and has a history of its own. 

History of Movement Analysis 

Thinkers and philosophers have been interested in gestural expression since antiquity. 

As far back as the Roman Empire, academics have studied the use of gesture in rhetoric 

(Kendon 154). A number of investigations of gestural communication were created from the 

17th through the 19th centuries in Europe, including a manual for notating and interpreting 

gestures by Bacon in 1875 (Kendon 155). As linguistic gesture expert Kendon explains, “the 

main concern was to lay down the rules and principles that were to be followed in the use of 

gesture, and to provide description and instruction so that the pupil could acquire a repertoire 

of specific actions that were to be used in particular ways and which were ascribed specific 

meanings” (Kendon 155). Though our purposes have shifted away from teaching effective 

techniques for gestural communication, current studies of gesture in linguistics and human-

computer interaction share the idea of “gesture as a ‘natural’ form of expression,” in 

Kendon’s words, and communication of an individual’s inner intentions (Kendon 155).  

As Kendon notes, the late 19th century marked a decline in the study of gesture in 

Western linguistics, but interest in communication processes sparked by information theory 

and cybernetics in the World War II era reignited the study of gestural communication 

(Kendon 160). Notably, in the 1940’s, Efron studied gestural communication as a product of 

environment and race (Efron 1), distinguishing between the preparation, action, and 

retraction stages of a gesture in an effort to classify movements to analyze cultural 
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differences in non-verbal communication (Zhao 9). A few other researchers, including 

Birdswhistell and Ekman, hinted at the relevance of developing a framework to study 

gesture, but it was not until the 1970’s that new systems for classifying gestures began to 

emerge in linguistics and psychology in the work of Kendon, McNeill & Levy, and Rime & 

Schiaratura (Zhao 9).  

Movement Analysis in Performing Arts 

By the time the discipline of linguistics began its exploration of gesture, practitioners 

and teachers of physical performance had already begun to create taxonomies of expressive 

movement. In the mid-19th century, Delsarte created a system of movements and postures for 

actors to express their inner emotional truths. Historian Warman explains that in the system, 

“every expression of the face, every gesture, every posture of the body corresponds to, or is 

but the outward expression of, an inner emotion or condition of the mind…” (Warman 23). 

Again, Delsarte’s system was prescriptive; he aimed to teach performers to better express 

their inner experiences, although he intended for his system to be honestly expressive rather 

than manipulated and imposed.  

In the 1920’s, dancer and choreographer Rudolf von Laban began his exploration of 

classifying movements from a more descriptive standpoint (Trinity Laban). In addition to his 

famous notation system, now obsolete with the wide availability of video, Laban and his 

colleagues− notably Lisa Ullmann, Irmgard Bartenieff, and Warren Lamb −developed a 

framework for describing shape, quality, spatial use, and body involvement of movements 

(Trinity Laban). This system considers not only what movement is occurring, but how the 

movement is being executed. The how is particularly useful in interpreting the intention 

driving a movement. 
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Though the Laban system for Movement Analysis has existed since the 1940’s and 

Delsarte’s system has been published since long before, neither Laban or Delsarte are 

included in Kendon’s often cited 1981 essay The study of gesture: Some remarks on its 

history. Recent efforts to connect gestures to affective meaning in the field of human-

computer interaction have begun to consider the Laban system as a guide for recognizing 

emotionally communicative qualities. However, little work establishing the relevance of this 

system to the linguistic understanding of gesture in conversational settings has been done. 

Moreover, this system was not well considered in the early studies of Kendon and his 

contemporaries that laid the groundwork for defining and classifying gesture in language 

acquisition and thus human-computer interaction. 

Defining a Gesture 

The problem of defining a gesture is essential to extracting meaning from movement-

based communication and designing systems that use this modality for communication 

between humans and computers. In this project, we will seek the definition for gesture that 

best suits the goal of interpreting intention from movement. The most obvious question to be 

answered is, of course, “What is a gesture?” Merriam-Webster defines a gesture as “a 

movement of your body (especially of your hands and arms) that shows or emphasizes an 

idea or a feeling” (“Gesture”).  In the lineage of Kendon, McNeill’s definition of a gesture 

includes “movements of the arms and hands which are closely synchronized with the flow of 

speech” (McNeill, 1992). In the field of dance, movement is generally seen as a medium of 

expression that can stand alone without augmentation, but which can be complemented by 

sound or speech (Ambrosio 21). The concept of gesture in Laban’s system, for example, 

includes any movement that does not involve the transfer of weight (Griesbeck 1).  For the 
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purpose of designing movement-based systems for human-computer interaction, I suggest 

that we adopt and expand the Laban definition of gesture to answer two important refining 

questions: 

First, what body parts are involved in a single gesture? The Laban definition excludes 

body parts that are not actually moving, but I suggest that the postural orientation of 

peripheral body parts can alter the intention communicated by the gesturing limb. The Laban 

system considers non-moving body parts that are active in communication by creating a 

separate category for Posture, subsequently interpreting meaning from the combination (or 

Merger) of Posture and Gesture (Davies 66). This is an effective approach, but I propose the 

inclusion of stationary body parts in our concept of gesture – positions of non-moving parts 

can serve as features in machine learning algorithms that can interpret movements. However, 

we must determine a system for excluding those parts of the body that are not active in the 

communication. The accurate classification of gestures by machine learning algorithms 

suffers in the presence of extraneous features. We can look to insights from human 

interpretation of movements to help solve this problem.  

Second, when does a gesture begin and end? In his early studies, Kendon attempted to 

determine the timing of gestures by having users encode videos. This exploration led to his 

theory that “the stroke of [a] gesture phrase occurs simultaneously with (or slightly 

preceding) the nucleus of the tone unit” (Zhao 10). I suggest that we expand Kendon’s work 

to include movements that fall outside of traditional linguistic gestures coupled with words. I 

also suggest that we expand our temporal consideration of gesture to better contextualize a 

single action within an extended interaction. Not just theoretical, the question of timing is 

technical in nature as well: a machine learning system must manage large streams of data and 
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must segment time in order to choose which data is relevant. This is known as the time-

segmentation problem in gesture recognition and is ubiquitous in implementations of gesture 

recognition systems. Many teams have developed ways of handling the problem, but I 

suggest we explore the perspective offered by humans interpreting meaning and quality from 

movement for possible new solutions. This will be challenging as these processes are not all 

conscious, but the potential insights from such an investigation are quite promising. 

Gesture Classification Systems 

Having established the relevance and fundamental challenges of designing 

movement-based systems for human-computer interaction, we will examine a few different 

taxonomies for gesture classification from different disciplines. As discussed above, 

philosophers have created taxonomies of expressive gestures seeking to better understand 

and leverage non-verbal communication for centuries. We will investigate the systems 

created as part of the surge of interest in gesture in language acquisition in the latter half of 

the 20th century. 

Gesture Classification in Linguistics 

Gesture researcher Efron, widely considered the grandfather of gesture classification 

in linguistics, set out to understand the differences in gestural communication of different 

ethnic groups. In his investigation, he laid the groundwork for linguistic researchers that 

followed. As mentioned above, he established the stages of a gesture as preparation, stroke, 

and retraction, later adopted by Kendon (Zhao 9). He also defined emblems in gesture: as 

interpreted by Johnson and colleagues, “emblems were movement patterns that had a precise 

meaning.” Efron believed that glossaries of emblematic gestures could be created for specific 

ethnic groups, and he created one such glossary for immigrant Sicilians in the United States 
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(Johnson 1). This work guided Saitz and Cervenka in their creation of similar glossaries for 

Columbians and Americans.  

It also influenced Ekman & Friesen in their system for classifying nonverbal 

behavior, which distinguishes between “facial expressions of emotion, regulators, adaptors, 

illustrators, and emblems” (Johnson 1-2). According to Ekman and Friesen (Ekman 39-47): 

• Regulators are movements that accompany speech to facilitate the flow of 

conversation and ideas as in head nodding or lifting a finger. 

• Adaptors (also called manipulators) are non-conscious movements that coexist 

with speech to adapt to the conversational situation, such as scratching one’s 

face or adjusting one’s clothing. 

• Illustrators are gestures with co-occur with speech to illustrate the idea being 

expressed. This could include indicating the size or shape of an object with 

one’s hands or deictic gestures. 

• Emblems are non-verbal signals that can be directly translated into words, 

such as the ok-symbol or thumbs up. These are culturally specific. 

• Emotional expressions are signals of an emotional experience. These could 

include facial expressions, postural shifts, or any other emotionally expressive 

movement. 

In a similar approach to that of Ekman and Friesen, Kendon attempts to extract 

meaning from gesture by interpreting its conversational context. However, rather than 

classifying gestures into categories that serve distinct conversational purposes, Kendon 

places gestures on a continuum ranging from the least linguistically significant to the most 

linguistically significant movements (McNeill, 2006 58-61). In line with his studies that tie 
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gesture to speech temporally, Kendon arranges gestures into classes according to their 

interchangeability with words as follows:  

 

! Presence of language properties and social regulation increase "  

Gesticulation ! Language-like Gestures ! Pantomimes ! Emblems ! Sign  

! Obligatory presence of speech and idiosyncratic gestures decrease # 

Figure'1:'Kendon'Continuum'

!
Gesture linguist McNeill explains that with movement from left to right on the continuum, 

“(1) the obligatory of presence of speech declines, (2) the presence of language properties 

increases, and (3) idiosyncratic gestures are replaced by socially regulated signs” (McNeill, 

1992 37). For example, a thumbs up would fall toward the sign end of the spectrum as it has 

a specific meaning (within particular cultures) that can be accurately interpreted without 

accompanying speech. An extension of the hand forward with the palm facing upward in the 

middle of a sentence, on the other hand, would fall toward the gesticulation end of the 

spectrum as a specific meaning cannot be gleaned from the movement alone. 

Informed by the work of their predecessors, McNeill & Levy also conform to the 

viewpoint that movements must be interpreted in conjunction with co-occurring speech. 

Their widely adopted system for classifying gestures further dissects the gesticulation area of 

Kendon’s continuum into the following dimensions: 

• Iconic: “Such gestures present images of concrete entities and/or actions. For 

example, appearing to grasp and bend back something while saying ‘and he 

bends it way back.’ The gesture, as a referential symbol, functions via its 

formal and structural resemblance to event or objects.” 
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• Metaphoric: “In a metaphoric gesture, an abstract meaning is presented as if it 

had form and/or occupied space. For example, a speaker appears to be holding 

an object, as if presenting it, yet the meaning is not presenting an object but an 

‘idea’ or ‘memory’ or some other abstract ‘object.’” 

• Deictic: Pointing to indicate location, usually but not always with a finger or 

hand. Location can be either immediate or metaphoric. 

• Beats: Rhythmic hand movements accompanying speech, “signaling the 

temporal locus of something the speaker feels to be important with respect to 

the larger context.” (McNeill 4) 

The work of McNeill & Levy, Kendon, Ekman & Friese, and Efron provide tools for 

analyzing the meaning of movements in their conversational context. In order to more 

closely consider natural, effortless forms of nonverbal communication for human-computer 

interaction, we should also investigate the cognitive science perspective on movement as a 

medium for communication. We are interested in both the processes by which gestures are 

interpreted and the processes by which they are produced. 

Gesture in the Cognitive Sciences 

We begin our investigation of the perception of meaning from movement with 

cognitive science pioneer Michotte’s landmark work on perception of causality from 

moving visual stimuli. By showing animations of moving geometric shapes and asking 

subjects to report percepts, Michotte demonstrated that causal relationships were almost 

universally perceived by observers from simple movements (Scholl 301). Michotte’s work 

focused on “discovering the spatiotemporal parameters that mediate these causal percepts, 

such as the items’ relative speeds, speed–mass interactions, overall path lengths, and spatial 
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and temporal gaps” (Scholl 301). As Scholl and Tremoulet suggest, the most important 

contribution of Michotte’s work may be the knowledge that there are “specific conditions” 

of movement that lead to the perception of causality (Scholl 301). Extending this work, 

Heider & Schimmel use similar methods to demonstrate that humans are likely to interpret 

personality traits and emotions– even genders and specific intentions (Dittrich 254) – from 

the movement of abstract objects in animations (Scholl 302). This evidence suggests that 

movement itself is a medium by which affect, personality, and intention are communicated. 

Similar research like that of Bassili supports that movement patterns are also indicators of 

animacy of an object (Scholl 303-304).  

Though it is clear that movement plays a role in communication and perception of 

intention between humans, only recently has research begun to shed light on the nature of 

processing of these stimuli. In this discussion, we must distinguish between perceptual 

processes – low level construction performed by the visual system – and cognitive processes 

– high level processes used to interpret the pre-processed constructions of different sensory 

systems (McLeod). Scholl and Tremoulet suggest that instances of interpretation of 

causality, animacy, and intentionality from simple movements “have the character of visual 

percepts yet involve what are traditionally thought to be higher-level concepts” (Scholl 

305). They conclude that evidence is “consistent with the view that such phenomena reflect 

primarily perceptual and perhaps modular processing, and at a minimum are very different 

(and can be dissociated) from high-level cognitive judgments of the existence of causality or 

animacy” (Scholl 304). 

We can also distinguish between top-down and bottom-up models of perception. In 

bottom-up models, sensory stimuli are processed iteratively, one piece at a time, with 
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increasing complexity at each level of processing to construct overall meaning of the stimuli 

(McLeod). In other words, the parts are processed to construct the whole. In top-down 

models, information about the context of the stimuli inform the interpretation of each part at 

every stage of processing (McLeod). In other words, the context of the whole informs the 

analysis and interpretation of the parts, including which parts should be attended to. In the 

lineage of Michotte, Dittrich & Lea have conducted studies to assess perception of 

intentionality and animacy of a uniquely moving letter amongst a sea of other less directly 

moving letters. They hypothesize a combination of bottom-up and top-down processing: 

“The immediate impression of intentionality (or causality) is given by a 'bottom-up' process 

of selecting specific motion features, and at a later stage these are visually encoded and 

conceptually integrated in such a way that intentional percepts are activated through a 'top-

down' process” (Dittrich 254). Based on their results, they conclude that, “the perception of 

intentionality can be a relatively immediate, bottom-up process, probably occurring quite 

early in the visual processing” (Dittrich 255). However, they note that in more complex 

behaviors like speaking, top-down cognitive processing also plays a role (Dittrich 255).  

It is relevant to note that Dittrich & Lea focused on assessing intentionality from 

interactions between a target letter and goal letter. The idea here is that the interaction is the 

indicator for intentionality. When the goal letter was made invisible, the interpretation of 

intentionality became less accurate, but only slightly (Scholl 304), indicating that the 

movements of the object itself, removed of any context, were communicative to some 

degree of intentionality. This suggests that movements and their execution are 

independently communicative, supporting the investigation of the meaning of individual 

movements in conversation and conversational interfaces. 
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The cognitive sciences also offer theories on the onset of communicative movement 

in conversation on the part of the doer. At this point, two opposing models for 

understanding the onset of a gesture exist. In coactivation models, speech and gesture arise 

from the same impulse or idea. A person first experiences a thought and the mind channels 

the outward expression of the thought through different media of speech and movement 

simultaneously (Zhao 16). In competition models, speech and gesture compete for attention 

and distract the doer from one another. In this view, attention is a limited, finite resource 

that must be divided amongst different cognitive tasks. Attention that is dedicated to 

speaking detracts from the available resources for moving and vice versa (Zhao 17).  

Understanding the cognitive processes associated with multi-modal expression is 

important to interpreting and contextualizing expression through a single modality. Is it 

appropriate to ascribe meaning to a movement based on cues from other media for 

expression? Is it appropriate to ignore context provided by those media? Would it be 

appropriate to design systems for human computer interaction that rely on multiple 

modalities for communication? Further attention is needed to adequately investigate this 

topic. This thesis draws from the field of dance to provide tools for interpreting movement 

independent of other co-occurring forms of expression. 

 The linguistic models for classification of gesture discussed up to this point give great 

consideration to the relationship between gestures and the words they complement. Shape is 

considered in deriving meaning from emblematic gestures or in conjunction with words in 

metaphoric gestures. Location in space is considered in interpreting deictic and self-

referential gestures. Timing in conjunction with words is considered in decoding beat 

gestures. However, the quality of gestures is not well considered in the linguistic approach to 
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classification. The manner in which a body part moves through space over time is considered 

more thoroughly in the field of dance in a system called Laban Movement Analysis. 

Gesture Classification in Laban Movement Analysis 

 Laban Movement Analysis provides a system for describing characteristics of 

individual movements and phrases according to four Affinities: Shape, Effort, Body, and 

Space. Shape is primarily concerned with position and pathway (change in position over 

time) of body parts (Konie 2). The Shape of a movement can be described as arc-like (curvy) 

or spoke-like (linear). Spoke-like movements tend to be more direct and are more likely to 

indicate aggression or urgency. The Shape of a movement can also be rising/sinking, 

spreading/closing, or advancing/retreating (Konie 2). This terminology for describing Shape 

inherently encodes emotional and intentional interpretations.  

The Effort Affinity is intended to describe the differences between movements that 

are mechanically similar but qualitatively and expressively different. Is a movement sharp or 

soft? Light or Heavy? The quality with which a movement is performed in important in 

interpreting the mover’s emotional state or intention. In order to decode qualitative 

differences, the Laban system 

considers four factors: Space (Direct 

or Indirect), Weight (Heavy or 

Light), Time (Quick or Sustained), 

and Flow (Free or Bound) (Konie 3).  

Because the Laban Efforts play a 

significant role in this research, it is 

important to gain a sense for each of the above Figure'2:'Laban'Effort'Graph'(Cooba) 
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factors: 

1. The Space factor describes how an action is situated in space. An Indirect action 

may meander through space or change in spatial intention over the course of a movement, 

where a Direct action has a clear spatial pathway and intention that is consistent over its 

duration and is more likely to feature a clear stop. 

2. The Time factor describes how a movement behaves in time. In the Laban system, 

a movement is either Quick or Sustained, meaning that it lasts for a short or drawn out time. 

This is obviously dependent upon the definition of a scale or point of reference, which is 

usually defined by the gestural phrase in which a movement occurs. 

3. The Weight factor describes the physical effort that goes into a movement and the 

grounding with which the movement is performed. A Light movement generally involves 

less resistance and is supported by less power than a Heavy/Strong movement. 

4. The Flow factor describes the flow of energy and momentum within movements. 

For example, a Free Flow movement is characterized by conserved speed and fluidly 

transformed direction within its momentum, where a Bound Flow movement is characterized 

by clear and intentional changes in speed and direction (Konie 3). 

Each of these factors represents a continuum that must be calibrated to each 

individual mover and situation, but a value assignment for each factor can aid in qualitatively 

describing a movement. Laban articulated eight specific Efforts in the Action Drive: Slash, 

Dab, Press, Wring, Flick, Glide, Punch, and Float, each a combination of specific values for 

the Time, Space, and Weight factors visible in Figure 3 and in Table 2 (Laban). These Efforts 

are particularly useful in connecting intention to the quality of a movement as their titles 

communicate both quality and aim. Diagrams approximating how the same movement might 
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look if performed with each of the Laban Effort qualities are shown in Figure 3. Length and 

width of arrows indicate duration and strength of movement. Slight variations in pathway 

might demonstrate an Indirect approach to space, but these variations in the arrows mostly 

indicate speed over the course of the movement. Size and shape of arrowheads indicate the 

quality of the stop, where shallow, wide arrowheads indicate clean stops. 

!

Figure'3:'Laban'Effort'Diagrams'

Effort! Time! Space! Weight!
Dab! Quick! Direct! Light!
Glide! Sustained! Direct! Light!
Press! Sustained! Direct! Heavy!
Slash! Quick! Indirect! Heavy!
Wring! Sustained! Indirect! Heavy!
Flick! Quick! Indirect! Light!
Float! Sustained! Indirect! Light!
Punch! Quick6 Direct6 Heavy6

'

Table'1:'Laban'Effort'Categories'
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In the Body Affinity, we are concerned with the patterning of connectivity between 

body parts. Bartinieff outlines 6 fundamental patterns of Total Body Connectivity:  

• Breath: relationship between a movement and the breath of the mover 

• Upper-Lower: relationship between regions above and below the waist 

• Core-Distal: relationship between the core and distal points on the body 

• Head-Tail: relationship between the top and bottom ends of the spine 

• Body-Half: relationship between right and left sides of the body 

• Cross-Lateral: relationship between one quadrant of the body and its diagonally 

opposite quadrant (Konie 4) 

A thorough investigation of the use of the body in a movement also considers the point of 

initiation for a movement and the sequencing of body parts involved (Konie 4). A movement 

that is initiated by the core may indicate an inner compulsion rather than an externally 

motivated drive, for example. Or a movement that is sequenced simultaneously (all parts 

shift at once) may communicate directness of intention, where a movement that is sequenced 

differently may communicate less commitment to accomplishing a goal or acknowledgement 

of obstacles.  

The final Affinity for consideration is Space. In the Space Affinity, LMA defines the 

kinesphere as the sphere that marks the boundary of reach of a person’s body in three-

dimensional space (Konie 4). A movement can be central, radiating from the center of the 

kinesphere outward, peripheral, moving along the edges of the kinesphere, or transverse, 

slicing non-radially through the kinesphere (Konie 4). The Space Affinity also dictates the 

division of space into vertical, sagittal, and horizontal dimensions and planes similar to those 
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of Cartesian coordinates and the dissection of movement into directional pulls (Konie 4). The 

LMA methods for dividing space can be useful in determining the intention of a movement. 

For example, a movement that occurs in the horizontal plane might communicate a 

relationship between two points in time or space, where a movement in the sagittal plane 

might communicate ambition or aggression. 

The Laban system for movement analysis outlines a variety of communicative 

features of movement that can be extracted and interpreted separately from any 

accompanying speech. The use of such a system could enable the interpretation of movement 

independently of any other modalities, which could be useful in a computing system in which 

the integration of different modalities is complex and expensive. It also opens up the 

possibility of interpreting non-conscious communications of the state of a user of a system. 

There are many applications in which monitoring a user’s emotional state could aid in better 

meeting the needs of the user, such as monitoring the care of an individual in the context of 

assistive technology. The field of dance also provides tools to enable the consideration of 

features of previous movements in the interpretation of features of new movements. In other 

words, a movement can be contextualized relative to other movements rather than relying on 

separate modalities. 

Interpreting Movement in Context 

Choreographic Approach 

More broadly, the study of dance and choreography provides a myriad of tools for 

interpreting movement in context. The role of a choreographer is to design a sequence of 

movement events that are in some way significant or meaningful to an observer. As 

choreographic scholar Jacqueline M. Smith-Autard describes, the composition of a dance is 
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“the moulding together of compatible elements, which, by their relationship and fusion, form 

an identifiable ‘something’” (Smith-Autard 3). This is not necessarily accomplished in the 

form of narrative and literal meaning, but often in the form of an emotional arc or the 

expression of an abstract relationship between ideas (Smith-Autard 5). Regardless of the 

choreographer’s specific intention, he or she composes movements considering both content 

– movement vocabulary– and context – construction of the overall work – to realize his/her 

specific goals (Smith-Autard 3). The choreographer makes choices about what movements 

are performed by who, when, and how. The choreographer develops concepts by finding 

variations on previous movement ideas, investigating how subtle changes alter the meaning 

of movements  (Green ix-x). This development reveals relationships across space and time in 

the same way that movements in daily life reveal relationships.  

Parviainen and collaborators argue that the sensibilities of a choreographer should be 

utilized in user experience design to consider experiences in context. They suggest that 

movements should “be understood as dynamic moments of embodied presence belonging to 

an experiential chain of different movements which has its own significance as a whole” (1). 

Proposing a framework for dissecting events, Parviainen asserts that dance provides tools for 

understanding micro, local, and global context of interactions. The research team defines 

micro level of context as “improvised or automatic and habitual movement patterns which 

people make in their ordinary way of life” with their kinespheres (Parviainen 2). Local-level 

consideration of context is defined as the connection between the uses of technology and 

other activities, including “relations we create by using devices” (Parviainen 2). Macro-level 

context includes “connections and relations in which we exceed our own physical limits” 

(Parviainen 3). For the purposes of developing gestural interfaces, we will mostly be 
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concerned with mico-level contextualization of movement as informed by dance. What is the 

relationship between a movement and the preceding movements? Is the current movement a 

repetition or variation of something we have seen before? We would be amiss to ignore the 

broader contextualization of movement, however, in a design paradigm that is largely 

concerned with holistic thinking. As designers have come to view the context in which an 

action occurs as equally important to the action itself, it is important for gestural interfaces 

designers to develop tools for contextualizing movement. 

Contextual Design Frameworks 

By the early 1990’s, several design frameworks had emerged in response to 

frustration with inadequate human-computer interactions and shifts in the cognitive sciences. 

Situated action, distributed cognition, and activity theory are approaches to understanding 

actions of an individual in context. Situated action (activity) is the theory that any individual 

action must be understood in relation to the specific situation in which it occurs. As Clancey 

explains, 

Situated activity is not a kind of action, but the nature of animal interaction at 
all times, in contrast with most machines we know. This is not merely a 
claim that context is important, but what constitutes the context, how you 
categorize the world, arises together with processes that are coordinating 
physical activity. To be perceiving the world is to be acting in it--not in a 
linear input-output relation (act>observe>change)--but dialectically, so that 
what I am perceiving and how I am moving co-determine each other 
(Clancey 95). 
 
In the situated action approach, an individual’s perception of a situation cannot be 

separated from the actions chosen by the individual. Rather, perception and decision-making 

co-occur in conversation with one another. Distributed cognition, like situated action, is 

concerned with the relationship between a subject and his/her environment as a way of 

understanding actions, but in distributed cognition, the actor cannot be separated from his or 
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her environment. Rather, the system in which the actor resides is responsible for the actions 

taking place. The approach “focuses mainly on three kinds of distributed cognitive processes: 

social processes: across the members of a social group; processes related to material 

environment: across internal and external (material or environmental) structures; and 

distributed cognition in time: how the products of earlier events can transform the nature of 

later events” (Riva 51). Activity theory is similar in that it views a system as a whole as 

responsible for the action, but in activity theory the action cannot be separated from the 

system. As Nardi explains,  

Activity theory proposes a very specific notion of context: the activity itself is 
the context. What takes place in an activity system composed of object, 
actions, and operation, is the context… People consciously and deliberately 
generate contexts (activities) in part through their own objects; hence context 
is not just ‘out there… Context is both internal to people—involving specific 
objects and goals—and, at the same time, external to people, involving 
artifacts, other people, specific settings. The crucial point is that in activity 
theory, external and internal are fused, unified (Nardi 38). 
 
Situated action, distributed cognition, and activity theory provide designers with a 

way of considering interactions within context, so that specific instances of interactions can 

be considered to create more broadly functional systems. We can observe how these abstract 

ideas can be applied to the design of computing systems. For example, design researchers 

Uden and Helo outline a framework for designing “context-aware” mobile applications 

considering factors like the size of a mobile screen, the changing environment of use, and the 

specific needs of individual users (Uden 2). In the same paper, they describe the effective 

design of shallow navigational structures in websites considering the optimization of 

cognitive load for users (Uden 4). However, they also note that, “Computers!are!currently!

not!able!to!take!full!advantage!of!the!context!of!humanQcomputer!dialogue,”!and!that!“by!

improving!the!computer’s!access!to!context,!we!can!increase!the!richness!of!
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communication!in!humanQcomputer!interaction”!(Uden!4).!The technical challenges 

posed by creating gestural interfaces, in conjunction with limited knowledge regarding the 

meaning of body movements, have narrowed the potential contexts for consideration in their 

design, preventing the application of contextual design approaches to movement-based 

interactions. 

Problems with Current Gestural Interfaces 

The necessity of special hardware for sensing, tracking, and interpreting movement 

data confines gestural systems to a context in which the hardware must be consciously 

activated. For example, to interact with the Microsoft Hololens, a person must put on the 

headset, adjust it, and activate a program. This mitigates the possibility of interacting with 

such systems naturally within the flow of everyday life. Moreover, existing frameworks for 

interpreting gesture in linguistics are mostly concerned with understanding movement in the 

context of speech and based on form, limiting our ability to interpret movement in other 

contexts. In an article in Smashing Magazine, author Chris Noessel compiles a list of 

commonly used gestures in interface design: Wave to activate, Push to move, Turn to rotate,  

Swipe to dismiss, Point to select, Pinch and Spread to scale (Noessel 5). While many of these 

movements are intuitive, each one can be traced to one of the early human-computer 

interaction concepts: pointers, direct manipulation, and emblems, and these concepts reflect 

the linguistic approach to understanding gesture. Although this approach is certainly valid, 

this set of movements only comprises a small subset of the communicative movements 

people engage in on a regular basis. The absence of frameworks for interpreting movement 

as more than an accompaniment to speech limits our ability to harness the previously 

discussed contextual design frameworks in the context of gestural interfaces.  
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Fortunately, leaders in the field of gesture-based human-computer interaction are 

thinking about the problem. Gesture researcher Zhao notes four major focuses for future 

gesture-based HCI research based on the work of human-computer interaction expert Cassell: 

Coarticulation (time segmentation), Spatialization (integrating movement systems into spatial 

environment), Selection (creating “metaphoric gesture[s] that might be associated with an 

abstract concept”), Expression (modifying movement quality to express mood or 

temperament) (Zhao 24). Advances in each of these areas will provide better tools for 

understanding and designing gestures in context so that they can be better utilized as a 

medium for communication. It is possible that the body of knowledge in the field of dance 

can offer tools to aid in this contextualization. We can also look to the integration of 

movement into screen-based interfaces for insights into reducing the separation between 

movement and other activities. 

Survey of Applications for Movement Quality in HCI 

Movement as Communicator On-Screen 

Researchers since the 1970’s have been concerned with the use of movement in the 

presentation, interaction and manipulation of signifiers on computer screens. The marching 

ant signifier for selection and jumping icons for alerts provide examples of the successful 

integration of movement as a medium for communication into a screen-based workflow. 

More recently, Mutlu and colleagues have begun to investigate the design of movement on 

the screen to elicit affect and/or communicate emotional intentions.  

Informed by the work of Michotte and colleagues in the cognitive sciences, Mutlu’s 

team “iteratively designed and implemented a public social interface using abstraction and 

motion as design elements” to “[communicate] simple social and emotional content” (Mutlu 
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1). As they explain, “A substantial amount of work in Human-Computer Interaction borrows 

from biological and natural materials for the design of interactive displays that deliver 

information on the periphery of attention” (Mutlu 2). As the cognitive science literature 

suggests, movement is a medium for communication that is processed “on the periphery of 

attention.” Mutlu’s team were able to successfully create eight out of ten motion patterns 

with statistically significant consistent emotional interpretations (Mutlu 4), noting that the 

interface changed the social dynamics of the room and that people interpreted the interface 

both individually and collaboratively (Mutlu 7). If designers had a stronger understanding of 

how movement quality is communicative or how movements are contextualized on a larger 

scale, movement of elements on a screen could be designed to more fluidly communicate 

intention or emotional state. For example, an icon might move with a more aggressive 

movement quality to indicate that an issue must be attended to urgently, or a the appearance 

of a message box suggesting actions to a user might use a more gentle movement quality so 

as to gain the user’s attention without interrupting the user’s thought process. This 

knowledge might be especially relevant to creating more, communicative, relatable virtual 

characters that could express social and emotional responses to users’ actions (Vala 1). Such 

characters are often employed to guide users through interactions with smart homes, 

installations, and other assistive technologies. The applications would reach traditional 

screen-based computing systems and touch-screens, as well as screens in nontraditional 

locations. 

Movement as Communicator Off-Screen 

With the recent advancement and availability of new hardware such as the Microsoft Kinect, 

Leap Motion, and smart phones, as well as robots, we can begin to consider movements off the screen 

as media for communication in human-computer interaction. In this new modality, possibilities for 
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interaction include movements required of users to interact with a system, the interpretation of non-

conscious movements performed by users to infer intentionality, and movements of the physical 

representation of the system as communicators (robots and other moving hardware). Particularly in 

the case of designed movements for interaction, shifts in scientific understanding of the experience of 

moving should guide the approach taken by interface creators. 

Kinesthetic Interfaces 

With new hardware for interacting with technology, new considerations for the design 

of user experiences arise. Technology can influence the state of a user through content, ease 

of navigation, and intuitiveness just the same, but now the user can also be influenced by the 

physical movements required to interact with the system. This is both an avenue full of 

possibility and a new challenge.  

In conjunction with the movement toward more holistic approaches to understanding 

human behavior, cognitive and neural science research provides substantial evidence of a 

link between the sensation of movement and emotional state. In a study published in 2010, 

Casasanto and Dijkstra examined the relationship between simple, meaningless motor tasks 

and emotions. They found that when subjects were asked to move marbles downward from a 

higher bin to a lower bin, they were able to recall memories with negative emotions faster 

than those with positive emotions. When given emotionally neutral prompts for memories, 

they were significantly more likely to recall emotionally negative memories (Casasanto 1). 

More popularly known is Amy Cuddy’s research on power-posing, which indicates that 

spending two minutes in a powerful position raises testosterone levels and lowers cortisol in 

the brain, enhancing confident functioning in social situations. She has found that the 

converse is also true (Cuddy). This research suggests a link between proprioceptive and 
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equilibrioceptive information and human emotion, supporting conjecture that the physical 

state of a body affects an individual’s mental and emotional states.  

In this new paradigm, the state of the physical body is now entangled with the state of 

a person’s mind, and a new context-based design framework has emerged to support this 

understanding. The embodied cognition theory, “underlines the central role of body in 

shaping the mind” (Riva 51). Specifically, the mind has to be understood in the context of its 

relationship to a physical body that interacts with the world. Hence, human cognition, rather 

than being centralized, abstract, and sharply distinct from peripheral input and output 

modules, has instead deep roots in sensorimotor processing” (Riva 51). This approach is 

reflected in the design of new gestural interfaces, including interactions with the smart 

phone. 

Several scholars and designers have already begun to consider the use of Laban 

Efforts in the design of gestural interfaces. Focusing on touch screen interactions, UX 

designer Traci Lepore classifies the slide-to-unlock interaction on the iPhone as a Laban 

Glide, noting that the gesture is “focused, easy, and isolated” (Lepore 2). Based on the results 

of the pilot studies in this thesis, the gliding action may be associated with a sense of ease 

and accomplishment, and this affect-Effort association may contribute to the success of the 

design. The focus of this paper is to evaluate the validity of this analysis. Lepore also notes 

the successful use of the Press to move icons around on the iPhone screen, which is 

consistent with the effort required to move objects around in the physical world. As a less 

successful employment of Laban Efforts, Lepore notes the Flick needed to shake the iPhone 

to undo actions (Lepore 2). As Lepore explains, the Flick is a Light movement, which 

requires little effort to accomplish, where undoing a previous action requires more effort. She 
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suggests that a heavier movement quality like Slashing might be more appropriate for this 

interaction (Lepore 2). 

Dance and technology scholar Kate Sicchio highlights the potential, perhaps 

inadvertent, emotional effects of such kinesthetic interfaces, citing the Tinder Flick motion 

(Sicchio 22-24). Sicchio suggests that the experience of the Laban Flick Effort is carefree, 

much as the experience of flipping through dating profiles on Tinder can be shallow and 

cursory (Sicchio 22-24). This evaluation is consistent with criticism of Tinder’s influence on 

the modern dating world, in which people increasingly view potential mates as disposable 

(Sales 1). This criticism can be traced to the actual content and social constructs of the app, 

but it is possible that the physical experience of swiping through Tinder influences the way 

users feel about other users (Sicchio 22-24). With greater awareness of the connections 

between movement quality and affect, we can design kinesthetic experiences for users that 

are more consistent with the goals of an interface. 

The consideration of kinesthetic experience as output of a system to the user has the 

potential to create impactful experiences, but designers are challenged to consider 

ergonomics to avoid fatigue (Danielescu). This requires the development of a diverse body of 

gestures for interacting with technological systems, often addressed through elicitation 

studies, in which users are prompted to create gestures to accomplish certain tasks 

(Danielescu). Researchers tackling this problem face a limit to the creativity and variety of 

gestures created. I suggest that a taxonomy of movement qualities could provide a new layer 

of complexity for creating different detectable, gestures without expanding the range and 

energy needed to perform the gestures. It is also possible that such a taxonomy could aid 
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designers in creating variations in gestures that align well with the user’s intentions or elicit 

satisfying, appropriate emotional responses to actions. 

Social Robots and Virtual Companions 

As the presence of robots expands beyond the realm of industrial settings, it is 

increasingly important that robots become capable of understanding and engaging in social 

interactions (Castro-Gonzales 1). As robotics researcher Alvaro Castro-Gonzales and his 

collaborators suggest, robotics designers aim to “[create] the illusion of animacy” in creating 

a robot by considering “its size, its appearance, its responsiveness to stimuli, the 

appropriateness of its responses and the diversity of its behavioral repertoire…” (Castro-

Gonzales 1). To investigate variations in movement style and appearance of robots as they 

affect human-robot interactions, Castro-Gonzales and his team observed humans interacting 

with a robot in a game of tic-tac-toe with different settings and constraints. They varied the 

amount of the robot that was visible to the player to investigate anthropomorphism and they 

varied the robot’s movements between smooth and mechanistic patterns, measuring 

“likability, animacy, unpleasantness, and trustworthiness” (Castro-Gonzales 2). They found 

that smooth movements were more likeable and animate for both the anthropomorphic robot 

and the lone robot arm (Castro-Gonzales 8). However, the smoothly moving full-body robot 

was considered more unpleasant than the mechanistically moving full-body robot, where the 

movement style did not seem to affect assessments of unpleasantness in the single robot arm 

(Castro-Gonzales 8). This research suggests that more human-like movement will contribute 

to greater likeability and animacy of social robots, but considerations of the appearance of 

the moving robot are necessary to have the desired effect. It also indicates that the 

appearance of a moving body cannot be fully separated from the movement of the body itself 
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in human interpretation. This must be considered in both the design and study of movement-

based forms of communication, but the aforementioned studies on the movement of abstract 

objects still support the concept of movement as an independent communicator. 

Similar research on movement as a communicator in social interactions between 

humans and physical hardware investigates the movement of drones independently of their 

appearance. In an interesting approach, Mutlu and colleagues explore the use of different 

flight patterns for drones as indicators of drone personalities and states of affect. By varying 

the timing of drone flights – altering delays and speed, the spatial aspects of the flights 

(altitude, directness of path, and tricks like flips and spins) and the quality of the flights 

(abruptness, smoothness, and wobbles) the researchers created identifiable personalities and 

states of affect (Mutlu 5-6). Participants reliably identified the personalities of the adventurer, 

the exhausted drone, and the antisocial drone (Mutlu 6). Participants were also able to 

identify changes in behavior in the drones, which the team cites as “the first proof that 

drones’ movements themselves can be perceived as portraying an emotional state” (Mutlu 7).  

This work suggests that movement is a useful medium for communicating drone 

intentionality to users and provides evidence that changes in movement quality produce 

different interpretations of both personality and affect. It also highlights a useful distinction 

between personality and state of affect. To create a taxonomy of movement qualities that are 

universally expressive without considering individual movement patterns would be naïve. It 

is possible that there is a way of interpreting movement qualities beginning from an 

individualized base of qualities or an individualized range of quantifiable descriptors, 

effectively normalizing changes in quality so that they account from variations in individual 

behavior rather than variations in behavior across individuals. As Mutlu’s research seems to 
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suggest, this goal may be accomplished through interpreting the base of movement for each 

person into meaningful information (personality) rather than simply disposing of the data. 

The study of communicative drone patterns serves as a guiding and validating force for the 

work of this paper as well as a potential application. Perhaps a better understanding of how 

quantifiable traits in movement quality affect social interactions will inform the design of 

communicative flight patterns to create more socially adept drones.  

Movement as Indicator of User Intention and State 

 We have already touched upon the potential to interpret affect and intentionality from 

movement, but we have not yet explicitly discussed the use of movement to assess the needs 

and desires of the user of a system beyond predefined, linguistically interpreted gestures. It is 

clear that movement can be used to deliver subtle cues to human users of technology by 

varying movement of objects and social characters on screen, varying movements of robots 

and other animate physical devices, and varying the choreographed gestures by which a user 

consciously interacts with gesture-based systems. It may also be possible to interpret 

emotional state and intention of a user from his/her non-conscious movements as humans do 

in face-to-face conversation. Such an achievement would have applications to creating more 

satisfying interactions between humans and computers in which both participants in the 

interaction would read the intentions of the other to inform responses and follow-up prompts. 

Systems with this capability might be used in assistive technology, education, and customer 

service interfaces, in which sensitivity to a user’s needs is essential to meeting the goals of 

the interaction. 

We have observed the complexity of the nature of the interpretation of movement in 

the human brain beyond a visual experience of the movement itself; it accounts for facial 
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expressions, sensory data from other modalities, individualized characteristics of movement, 

the appearance of the moving body, and contextual information. Beyond that, we have 

observed a complex web of contextual information that could be considered from immediate 

spatial context to temporal context like repetition and temporal placement within an 

interaction to previously established relationships between interaction partners to verbal 

content. There is even evidence that mirror neurons fire in our own brains when we watch 

another person move, so we have a similar movement experience in our stationary physical 

bodies that could be eliciting an emotional response. We are a long distance away from 

broadly considering these factors in computational analysis of movements, but it seems that 

consideration of movement quality may be the first step toward building truly responsive, 

sensitive human-computer interfaces. 

Precedents: Laban in Computational Classification of Quality and Affect 

Although the work of this paper is useful for any of the previously mentioned 

applications, we are concerned primarily with movement quality as an indicator of user 

intention, exploring the insights that the field of dance can offer in the creation of such 

systems. Specifically, we are investigating the usefulness of the Laban system for movement 

analysis focusing on the Effort graph for assessing user intentionality in interactive systems. 

Fortunately, several researchers in the field of human-computer interaction have begun this 

investigation in the recent years. 

In 2001, doctoral student in the cognitive sciences at University of Pennsylvania 

Liwei Zhao wrote a dissertation on the use of neural networks to identify Laban Efforts using 

motion capture data and computer vision for video data. Zhao’s approach uses low-level 

features like height and orientation of sternum, wrist angles, elbow swivel angles, and 
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torsion, curvature, velocity and acceleration of body segments to create a back-propagation 

neural network for each Affinity in the Laban Efforts– Time, Space, and Weight (Zhao 74-

87). Each network is trained on human Laban notator classified data to assign each 

movement a value for Time, a value for Space, and a value for Weight to perform the 

composite classification of Laban Effort.  

This system is able to predict Laban Efforts performed by certified Laban notators 

with about 90% accuracy, which is slightly higher than the rate of accuracy of classification 

by human Laban notators and significantly higher than the accuracy of classification by 

untrained observers (Zhao 104). Time segmentation in this system is handled with a 

combination of curvature and the zero-points for the second derivative of the motion with 

success (Zhao 85). This study provides evidence that algorithmic classification of Laban 

Efforts is possible for interactive systems. It also establishes features and methods that can 

successfully be used in the engineering of such a system. It does not address larger questions 

of relevance to the field of HCI despite sharing similar motivations to those of this paper. In 

this investigation, we will extend Zhao’s work to establish the presence of Laban Efforts in 

expressive movements by non-performers and attempt to connect the Laban Effort system for 

classifying movement quality to particular states of affect. 

Another series of studies has used Laban and dance systems for assessing movement 

to guide the development of algorithms that detect expressive qualities. In developing the 

EyesWeb Expressive Gesture Processing Library, Antonio Camurri and collaborators were 

informed by Laban and dance systems for analyzing movement as they created a set of meta-

features for detecting expressive qualities (Camurri 2-3). This initial research guided future 

work by HCI researchers Ginevra Castellano and collaborators in their attempt to classify 



! 51!

affect in expressive movement. In the later study, extracted features include quantity of 

motion, contraction index of the body, velocity, acceleration, directness index, and fluidity 

(Castellano 7). Using these features and various machine learning algorithms– 1-Nearest 

Neighbor, decision trees, and Naïve Bayes, the researchers attempt to classify four states of 

affect in the valence-arousal space– anger, joy, pleasure, and sadness (Castellano 3). 

Classification of anger was the most successful, where the others are successful above chance 

(Castellano 10). It is evident from this research that quantity of motion is useful for 

distinguishing arousal levels for identifying affect in the valence-arousal space and 

contraction index is useful for assessing positive or negative valence (Castellano 10). These 

results are consistent with expectations according to dance knowledge: higher levels of 

motion indicate greater levels of excitation and open, wide movements indicate more positive 

emotional state that closed-off, protective movements. That said, Castellano notes that 

confusion still occurs between positive and negative states of the same arousal and between 

positive states of different levels of arousal (Castellano 10). Perhaps a closer following of 

Laban’s principles in feature extraction may improve the accuracy of such classifications. 

This assertion is tested in a study by Giraud and collaborators, in which Laban 

principles for movement analysis guided the design of meta-features for algorithmic 

identification of affect. Giraud’s team recorded motion capture data for 20 students in their 

early 20’s performing simple, pre-choreographed exercise routines in four elicited states: 

“stressed by the observation of an audience (i.e., negative mood), amused by a video and 

gifts (positive mood), motivated to perform a session challenging a fictitious audience (i.e., 

aroused mood) and a control condition” (Giraud 16). The researchers used the Laban Effort-

Shape framework to extract five computed features: Impulsiveness (Time Effort), Energy 



! 52!

(Weight Effort), Directness (Space Effort), Jerkiness (Flow Effort), and Expansiveness 

(Shape Qualities) to explore affect in the valence-arousal space (Giraud 6). An important 

aspect of their approach is the distinction between push effects–internally motivated, 

spontaneous reactions to stimuli– and pull effects– responses to external factors constrained 

by social expectations (Giraud 2). They examine both sides of affect elicitation finding that 

pull effects tended to have higher levels of energy and arousal (Giraud 14). Overall, they 

found that aroused conditions were marked by higher mean energy, that positive moods were 

consistently higher in impulsivity, and that negative moods were associated with greater 

tension (Giraud 16). To explore the usefulness of the computed features in representing 

Laban qualities, the team compared the levels of each quality described by the statistics to a 

human encoding of the qualities, finding that energy and expansiveness were better 

represented than the others and that expert observers analyzed the qualities more consistently 

than naïve observers (Giraud 15).  

Giraud’s team has provided a useful precedent in analyzing the relevance of the 

Laban Effort graph for the purpose of human-computer interaction, specifically for assessing 

affect computationally from a person’s movements. Their findings suggest that the Laban 

Effort of a movement may be a useful metric in interpreting affect: that the Time and Weight 

factors may indicate valence and that Flow, Space and Shape may be useful in determining 

arousal. They also provide evidence that the quality of movements may change as a result of 

emotional state rather than simply the form of the movements. By using pre-determined, 

choreographed movement tasks, the team isolated the effects of elicited emotions on quality 

itself. Specific states of affect were predicted with less accuracy than one would hope for 

application in assistive technology and more broadly human-computer interaction. This does 
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not mean that the Laban system can conclusively be eliminated as a potential framework for 

identifying affect. It is possible that limiting the changes in shape of movements has limited 

expressivity, prohibiting the observation of full effects on movement quality. Perhaps the 

changes in form and quality are confounded such that limitations on one impose limitations 

on the other. Perhaps the computational methods for assessing the Laban qualities were too 

inaccurate to evaluate the Laban system for use in algorithmic assessment of movement 

quality. Alternatively, it is possible that Laban Efforts are in no way related to emotional 

expression in movement. It is even possible that the segmentation of time performed by the 

team altered the results of numerical analysis on the data. There are too many possible 

breakdowns in the system to make any broad conclusions about the Laban Effort system’s 

relationship to affect. The research advanced in this thesis will be aimed at filling in some of 

these relational gaps. 

Scope of this Investigation 

 We have observed in the studies regarding anthropomorphic robots and movement 

that the appearance of a moving body alters perception of the body’s movements. Beyond the 

size and shape of the body, considerable research suggests that perception of race influences 

communicative movements patterns. In a 1974 study, cognitive science researchers Word 

and collaborators provide evidence that differences in race induce delays in movement 

response times in conversation (Word). Recent work by Kenrick and researchers suggests 

that the perception of the speed of a moving body changes in response to the race of the 

moving body (Kenrick 1). The work of psychologist Jennifer Eberhardt suggests that it is 

possible to identify the race of a person based solely on body movement patterns (Eberhardt 

16). Similar evidence exists that gender can be predicted from body movements (Saunders 
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1). Research in this vein brings up two important issues for movement in human-computer 

interaction.  

First, different bodies move differently. As we have briefly touched upon, it would be 

naïve to think that we could create a set of movement qualities linked to states of affect 

(along with algorithms for identifying them) that could be universally applied to all moving 

bodies. Different bodies express themselves differently, and so it is important to work with 

diverse populations in developing the computational analysis of movement quality. This 

concept has important implications for all of the outlined applications, but it most 

dramatically affects the use of movement quality for assessing user affect in human-computer 

interactions.  

Second, interpretation of movement is altered by the perception of the physical 

appearance of the moving body. This is consistent with our understanding that movement is 

interpreted in context, including local context and the context of broader social expectations 

and relationships. Studies of interpretation of affect and quality, especially those involving 

the human encoding of movements of other humans on video, must consider the possible 

effects of physical appearance on interpretation. This idea is particularly relevant to the use 

of movement to communicate information to the user as we have discussed both on and off 

the screen. 

In this investigation, we acknowledge limitations in our consideration of these 

factors. Although they are important, they are beyond the scope of this initial investigation. 

Future efforts will be needed to account for these effects. 
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METHODOLOGY 

The goal of this research is to assess the relevance of classification systems from the 

field of dance for creating bidirectional interpretation and sensitivity in human-computer 

interaction. Although we have established a litany of concepts in dance that may be 

applicable to the creation of movement-based interfaces, we will concern ourselves with 

evaluating the usefulness of the Laban Efforts for interpreting emotional content encoded in a 

person’s movements. We will approach this problem through an iterative series of pilot 

studies investigating human perception of movement and intention in the context of 

conversation and expression of affect to investigate the following research questions: 

1. Can people without any formal dance/movement training identify the Laban Efforts 

in another person’s movement?  

2. Do people naturally move with the Laban Efforts in expressive interactions? 

3. Is there a correlative relationship between certain Laban Effort qualities and a 

mover’s emotional state or intention? 

 We draw inspiration from the precedents established in the fields of the cognitive 

sciences and human-computer interaction in the design of these pilot studies. 

Measures 

Guided by the approaches taken by Michotte, Ekman and Freisen, and Mutlu to 

establish systems for interpreting meaning and intention from movements, we will conduct a 

series of studies in which participants will encode the movements of others. In each study, a 

mixture of trained movers and non-experts, males and females of different ages from various  

geographic and cultural backgrounds, will label each movement of a subject with a Laban 

Effort and an emotional interpretation (or interpretation of intention). In the first pilot study, 
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movements encoded will be intentional performances of the Laban Efforts by a Laban-

trained mover specifically to determine if humans can observe the Effort qualities when we 

know they are being performed. In the second pilot study, participants will label the 

movements of individuals in conversation to determine if the qualities are present and/or 

perceived in human communication. The collected emotional and Effort data will enable us 

to assess the accuracy with which the average user of a computer (most likely not a dance 

expert) can classify Laban Efforts in movements to interpret them if used by computers as a 

medium to communicate information. We are also searching for evidence that the presence of 

Laban Efforts in a human’s movements imbues those movements with interpretable 

emotional or intentional content. If this is the case, we can establish a relationship between 

each Effort and its emotional interpretation, which can be used to design gestural interfaces 

that both interpret and outwardly communicate emotional intention through movement 

quality. In the latter of the two studies, the users also encode beginning and end times of 

gestures, the body parts involved in gestures, and the perceived valance and arousal levels of 

the overall communication sequence.  

Because we are attempting to generalize a framework for movement analysis used by 

experts in the field of dance beyond applications within that field, we are primarily 

concerned with subjects outside of the dance world. This presents an obstacle of terminology. 

We want to determine whether or not humans observe and process the Laban Efforts, not 

whether or not they can learn to, nor whether or not they understand the vocabulary. In the 

first pilot study, we will ask participants to encode movements with no introduction to the 

Laban vocabulary. Then, after a brief and vague introduction to the Laban Effort system, 

participants will re-encode the movements. We will compare results from the two rounds of 
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encoding to determine the potential language barrier obscuring the investigation. We will 

also ask users to encode both long videos (about 20 seconds, a sequence of movements of a 

single Effort) and short videos (about 3-5 seconds, a single movement of approximately the 

same shape performed with one of the eight Efforts). We will compare findings to assess 

both the capacity to recognize the Effort qualities in general and the capacity to recognize the 

Effort qualities independent of shapes or contextual clues. We note that a finding that non-

experts are not able to consciously identify Laban Efforts does not rule out the potential use 

of the system for human-computer interaction design entirely, as the processing is still 

possible at a non-conscious level.   

Effort and emotional classification of movements is collected in both pilot studies, 

but measures of start/end times and body parts involved in a movement are added to the latter 

pilot study to shed light on the human process of segmenting time and extracting features in 

interpreting movements, as discussed in the Background section of this paper. The time 

segmentation data is also required to evaluate Laban Efforts in the context of a full 

conversation, as they might occur in the context of human-computer interaction. If we are to 

determine that the Laban system of Efforts is relevant to interpreting user intention or 

communicating desired, personalized responses, we must observe that people both perceive 

and demonstrate these qualities in conversation. This requires the use of longer movement 

sequences, which requires time-based encodings of movements and their properties. Data 

regarding the overall interpretation of communication sequences attempts to illuminate the 

processes by which humans determine the relationship between an individual unit of gesture 

and a series of movement events (recall the work of McLeod to distinguish between top-

down and bottom-up models for interpretation). 
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In the second pilot-study, we also gather participant encoded measurements of 

valence and arousal– quantities introduced by psychologist Russell as part of the Circumplex 

model of affect in 1980 (Russell 1). We collect this data to more easily generalize emotional 

encodings, as many related words are used in emotional descriptions in Pilot 1, but it is 

difficult to confirm the relationship between these words as it is subjective and dependent 

upon context. The Circumplex model provides a useful way of quantifying emotional state 

and has been harnessed in similar research by Giraud and collaborators (discussed in the 

Precedents section of this paper). 

Instruments 

 In this project, we will work with video clips rather than live motion sequences as 

researchers including Kendon and McNeill have done in the past. This decision is primarily 

motivated by the desire to observe the way multiple people analyze the same sequences of 

movement in search of generalizable rules or at least generalizability of approach. The easiest 

way to accomplish this goal is to use video clips for viewings by different people at different 

times. The use of video clips also enables participants to re-watch movements to improve 

accuracy in analysis such that accuracy is not hindered by errors of memory. Another 

advantage of using observations of video over live observations is the capacity to obscure 

facial expressions and/or audio. Each of the videos used in the second pilot study is absent of 

facial features and voice recordings, so we can conclude that interpretations are based on 

content communicated by the body only. 

This choice to use videos also presents limitations. The use of video clips and the 

capacity to view them multiple times abstracts the context of the movements from their usual 

conversational setting. The process of consciously analyzing movements is not the natural 



! 59!

process for movement interpretation, so further investigation will be needed to claim that this 

type of interpretation occurs in real-time during communication between two people. 

Nevertheless, evidence that this type of movement quality analysis can be done by untrained 

observers with a reasonable degree of accuracy (even if out of context) supports the 

hypotheses that humans can interpret movement quality as an indicator of intention and that 

computers can be programmed to do the same thing.  

Additionally, the introduction of a video camera poses the question of the camera’s 

role in the interaction. It is likely that the awareness of being observed impacts the behavior 

of movers in the videos, and this potential interference is not accounted for in this project. 

Efforts were made to minimize this effect. The first pilot study does not attempt to observe 

human communicators in the context of real conversation but rather attempts to establish that 

humans are capable of recognizing and interpreting the Laban Efforts with some degree of 

reliability using videos of performed Laban Efforts, so this concern is less relevant. The 

second pilot study uses videos from the social network site Youtube.com, in which subjects 

of the videos are completely unaware of the study. The curated video set from Youtube.com 

includes children of various ages for their freer expressivity, hypothesizing that they will be 

less self-conscious than adults about their movements and that their expression will be less 

consciously altered by the presence of a camera. If this hypothesis is not correct, the evidence 

that the Laban Efforts are a significant part of natural human communication is weakened, 

but the evidence that humans observe and interpret the Laban Efforts remains strong.  

The second pilot study also uses video animations of motion capture data recorded 

specifically for this research. The choice to use the animations rather than video controls for 

the influence of the appearance of bodies, which is abstracted out of the video, on 
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interpretation of their movements. The experience of being recorded by a motion capture 

system– in this case, the OptiTrack system– involves a body suit covered in ping pong ball-

like reflectors, infrared cameras placed around the room, and standing in what is known as 

the “T-Pose” at the beginning of each recording for calibration purposes. Subjects were not 

informed of the purpose of the research, but the obvious purpose of observing movements 

cannot be ignored. To mitigate the impact of the environment, subjects were engaged in 

answering questions about their own chosen topics in order to distract them from the strange 

context of the conversation. It is impossible to assert that their awareness of the context did 

not factor into their behavior, but measures were taken to control this effect.  

The written survey method for collecting observations on the chosen movement 

sequences is motivated by the goal of observing consistency in interpretation amongst the 

general population. In order to draw conclusions about the generalizability of interpretation 

of movements, we must collect a sizeable sample of data. This is most easily accomplished 

by harnessing the power of crowdsourcing. In both studies, surveys and video content are 

distributed through the Internet and responses are collected and analyzed in Microsoft Excel 

and R. This enables the collection of data from more people in less time. It also requires 

quantifiable responses in the way that interviews could not as easily accomplish. Moreover, 

in the written survey method, participants are able to make their observations under less 

pressure of observation by survey conductors, thus responses are less likely to be influenced 

by time pressure or a sense of obligation to the researchers. 

The first pilot study gives careful consideration to the format of questions used to 

label movements with Laban Efforts. Potential question formats include multiple-choice 

(with various numbers of choices), matching, and free-form response. The use of free-form 
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responses is ruled out in order to minimize the fear of attempting a classification in a foreign 

discipline without any guidance and to limit responses to only the chosen set of qualities. The 

use of multiple-choice questions with only a few choices has the obvious disadvantage of 

improving the odds of chance correct answers, but the use of multiple-choice between all 

eight Efforts poses the challenge of overwhelming participants’ working memory. The use of 

matching, on the other hand, has the disadvantage of enabling the process of elimination as a 

tactic in selecting responses. In the first study, both limited multiple-choice questions and 

matching questions are used, enabling the capacity to compare results from the two methods.  

Observations of results from different survey methods motivated the use of a drop-down 

menu of all eight choices for Effort labels in the second study. 

The second study makes use of a web application, developed to make time-based 

encoding easier and more accurate for participants. The web application features a tool with 

which users could create time segments with automatically filled out forms by pressing and 

holding a key during the play of video clips. Users are able to drag the endpoints of time 

segments on a visual timeline to improve accuracy of segmentation and then asked to classify 

each time segment. This tool is designed to make the process of participating in the research 

less tedious so that more people will be willing to participate and respond to questions 

thoughtfully. The survey web application saves user data directly to a database, which is 

queried and cleaned for analysis, avoiding manual data entry and improving scalability. More 

information regarding the tool is available in Appendix C. 
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Analysis 

 In the pilot studies of this project, we are looking for trends in classification of Laban 

Efforts performed by different people, as well as trends in emotional interpretation. For 

videos of intentionally performed Laban Efforts, it will be reasonable to calculate the 

accuracy of classifications to evaluate the usefulness of the Laban Efforts for interpretation 

of movement. For both emotional interpretations of movements and Laban Effort labels of 

conversational movements, it will be reasonable to look for common responses, relationships 

between emotional interpretations and Laban Efforts, and associations between Laban Effort 

labels.  

 In the first pilot study, we are hoping to determine whether or not the Efforts can be 

observed and classified by non-expert observers, so we will calculate simple accuracy 

metrics  – Accuracy = Number of Correct Answers / Number of Possible Correct Answers – 

for user responses to each Effort video and each Effort category overall (including all videos 

for that category), as well as for groups of interest. We will calculate accuracies for each 

individual participant and then take averages over specific groups – Gender, Survey Format, 

and Movement Training – to compare the groups. We are also interested in consensus 

between observers and relationships between the different Efforts as they are perceived, so 

we will look at Mode, Second Mode, and Spread of labels for each Effort video. The Spread 

is a metric devised to measure variance in the categorical responses: 

!"#$%& = #!"#$%&'! #!!"#$%&'($)
!"#$%&'()"*!!"#$%!!"#

 

The metric is normalized so that an even distribution of samples amongst the possible 

categories (maximum Spread) equals one. The minimum Spread case – in which all samples 

are assigned to one category – is 1/#Categories – so it is larger when the number of possible 
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categories is larger because the data is concentrated in a smaller subspace of the larger 

possible space.  

We are also comparing survey methods and conducting preliminary associations 

between the Efforts and emotional interpretations in the first pilot. For this, we will perform 

calculations of the following quantities:  

• Percentage of correct responses and spread for each Effort video and category 

o Before vs. After learning Laban terminology 

• Quantity and character of similar emotional encodings (most popular, most related) 

• Quality of emotional encodings (do labels in the same Effort contradict each other?)  

• Per person accuracy of responses and averages over the groups of interest: 

o Male vs. Female 

o Trained vs. Not trained observers 

o Survey Format Multiple-choice vs. Matching 

In the second pilot study, we are searching for the presence of the Laban Efforts in 

emotional expression and conversation. We are also interested in the segmentation of time 

and the communicative aspects (features) of emotionally expressive movements.  

• Average number and spread of segments per video clip 

• Most common Effort and dispersion on each segment 

• Most common related emotional encodings associated with each Effort 

• Quantity of each Effort encoding in overall emotional encodings 

• Patterns of Effort encodings and segments in overall emotional encodings over time 
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STUDIES 

Pilot 1 

Do humans perceive Laban Efforts in movements? 

 The first pilot study advanced two initial questions. Do humans reliably perceive 

Laban Efforts in each other’s movements? Do humans reliably interpret emotional intention 

from movements with a specific Laban Effort? In order to answer these questions, a 

collection of videos was created, in which a trained dancer performed body movements 

classified by each of the eight Laban Efforts: Slash, Punch, Dab, Wring, Press, Flick, Float, 

and Glide. Videos were encoded by participants for Laban Efforts and emotional 

interpretation To control for the effects of both obscure terminology and the learning curve 

involved in understanding the classification system, each of the 16 videos was encoded by 

participants twice – once with no introduction to Laban, and once after a brief definition of 

each Effort as a combination of a specific value of Time, Space, and Weight. As discussed in 

the Methodology chapter of this paper, labeling methods for the videos were in question. To 

investigate the significance of the labeling method, both matching and multiple-choice 

strategies were employed in two different versions of the questionnaire, each of which was 

distributed to half of the participants. To allow maximum range of emotional interpretations, 

subjects were asked to provide free-form responses for emotional labeling of videos. Survey 

materials can be viewed in Appendix A. 

The experience of participating in the study was as follows. First, participants were 

presented with a series of long videos – each about 30 seconds long – consisting of multiple 

movements of multiple body parts in each Effort category. Subjects were asked to encode the 

videos with the appropriate Effort labels either by multiple-choice between three options or 
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by matching. Second, participants were asked to repeat the 

encoding task for a series of short videos – only a few 

seconds long – consisting of a single hand gesture at waist 

height toward the mid-line of the body (as in Figure 3) 

performed with each of the eight Efforts. After this, 

participants were asked to watch a 1:43 video introducing the 

Laban Affinities of Time, Space, and Weight with 

demonstrations of the polarities of each. A table identifying 

each of the eight Efforts as a unique combination of values for 

each Affinity was presented. Participants were asked to repeat the tasks of encoding both 

long and short videos after an introduction to the Laban system. Note that an error was made 

in the survey such that the post-introduction encodings were all completed in free-response 

form. This is addressed in the Discussion section of this paper. The final section of the study 

presented three videos, each with a specific emotional intention. Subjects were asked to list  

Laban Efforts they observed in the videos and provide titles for the videos.  

In Table 1 below, the Overall Accuracy was calculated by comparing every Effort 

label assigned in the study to the correct performed Effort label. The sum of the correct 

answers was divided by the sum of the 

answers (excluding missing labels) to 

find the Overall Accuracy. The 

average per person accuracy measure 

was calculated by comparing each 

participant’s Effort label for each 

Overall Accuracy 0.691037736  
Gender Female Male  

 0.68 0.69  
Survey Matching Multiple-Choice 

 0.74 0.79  
Training Trained Untrained Laban 

Trained 
 0.69 0.68 0.88 

Learning Pre-Intro Post-Intro  
 0.71 0.60  

Table'1:'Laban'Effort'Group'Results'

Figure'4:'Short'Video'Gesture 



! 66!

video to the correct performed Effort. The sum of each individual’s correct answers was 

divided by the sum of that individual’s answers to find individual accuracies (included in 

Appendix B). From there, group averages were calculated for gender groups and movement 

training background. Accuracies for question format were calculated from the number of 

correct responses for all questions in each of the two format groups. Accuracies were also 

calculated including all labels assigned before and after the brief introduction to Laban 

Movement Analysis. These metrics, along with Mode and second Mode in each category 

overall are included below in Table 2. Complete metrics for individual videos before and 

after learning are visible in Appendix B. !

All#Videos# Wring# Slash# Dab# Float# Punch# Flick# Press# Glide# #
Wring# 24# 0# 0# 10# 0# 0# 4# 3# Mode%

Accuracy%
1.0#

Slash# 1# 39# 0# 0# 2# 0# 0# 0#
Dab# 1# 1# 29# 0# 1# 2# 1# 0#
Float# 17# 0# 0# 34# 0# 0# 0# 13# #
Punch# 0# 12# 3# 0# 44# 0# 0# 0# #
Flick# 0# 0# 0# 0# 2# 49# 0# 1# #
Press# 2# 0# 17# 1# 2# 0# 42# 2# #
Glide# 7# 0# 2# 6# 1# 1# 4# 32# #
No#Resp.# 4# 4# 4# 4# 4# 4# 5# 5# #
Mode# Wring# Slash# Dab# Float# Punch# Flick# Press# Glide# Overall#
Accuracy# 0.43# 0.70# 0.53# 0.62# 0.79# 0.88# 0.75# 0.57# 0.65#
Spread# 0.37# 0.21# 0.30# 0.27# 0.18# 0.14# 0.19# 0.28#

#Mode#2# Float# Punch# Press# Wring# NR# NR# NR# Float# #
Accuracy#2# 0.30# 0.21# 0.31# 0.18# 0.07# 0.07# 0.09# 0.23# #

'

Table'2:'Laban'Effort'Overall'Results'

 Emotional interpretations of videos are show in Table 3. Here, words are placed in an 

Effort category according to the performed Effort in the video described rather than the 

participant’s label of the video. The purpose of this is to ensure that the emotional 

interpretations are connected to their actual movements. Words have been grouped according 
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to similar meanings and counts are reported for the overall group. A table of exact counts for 

root words used by participants is available in Appendix B. 

#

Ti
m
e:
#S
us
ta
in
ed

#

Weight:#Heavy# # # # Weight:#Light# # # #

Space:#Direct# # Space:#Indirect# # Space:#Direct# # Space:#Indirect# #

Press# Count# Wring# Wring# Glide# Count# Float# Count#

Determined,#Fixated,#
Focused,#Serious#

6# Cautious,#Inhibited,#
Wary#Restricted,#
Uncomfortable#

5# Easeful,#Uninhibited#
Free,#Open#

5# Confident,#Aloof,#
Regal,#Control#

6#

Bored,#Halfhearted,#
Dismissive#

4# Dull,#Malaise,#
Melancholy,#Sad#

4# Affectionate,#
Reassuring,#Comfort#

3# Relaxed,#Peaceful,#
Tranquil,#Calm#

5#

Heavy,#Push,#
Resistant,#Tension#

4# Luxuriant,#Reveling,#
Sensual,#Soft#

3# Disinterested,#Dull,#
Sad#

3# Ease,#Free# 3#

Assured,#Calm,#
Pleased#

3# Annoyed,#Irritated# 2# Engagement,#Alive,#
Enlightened#

3# Compassionate,#
Soft,#Sensual#

3#

Disappointed,#
Overcome#

2# Assured,#Confident,#
Strong#

2# Calm# 2# Light,#Whimsical,#
Dreamy#

3#

Reluctant,#Uncertain# 2# Conniving,#Slither# 2# Beckoning,#Beguiling# 2# Loss,#Surrender# 2#

Searching,#Yearning# 2# Strain,#Tense# 2# Conscientious,#
Reverent#

2# Alone# 1#

Strong,#Control# 2# Calm# 1# Effort,#Resolute# 2# Foggy# 1#

Restricted,#Frustration# 2# Changing# 1# Swing# 1# Tentative# 1#

 

!

Table'4:'Emotional'Survey'Summary#

 
 

Ti
m
e:
#Q
ui
ck
#

Weight:#Heavy# # # # Weight:#Light# # # #

Space:#Direct# # Space:#Indirect# # Space:#Direct# # Space:#Indirect# #

Punch# Count# Slash# Count# Dab# Count# Flick# Count#

Angry,#Mad# 7# Angry,#Mad# 7# Apathetic,#Disinterested,#
Uncaring,#Non[commital,#

Sarcastic#

5# Happy,#Playful,#
Excited#

6#

Frustrated,#Peeved,#
Perturbed#

5# Frustrated,#
Annoyed#

4# Tentative,#Uncertain,#
Hesitant,#Careful,#Confusion#

5# Whimsical,#
Soft,#Light#

3#

Aggressive,#Combative,#
Vengeance#

3# Confident,#
Strong#

3# Dull,#Melancholy,#Passive# 3# Annoyed,#Irked,#
On#Edge#

3#

Controlling# 2# Aggressive,#
Violent,#

Destroy,#Cut#

3# Confident,#Nonchalant# 2# Bouncing,#
Jumpy#

2#

Boom,#Slap# 2# Hate,#Mean,#
Hostile#

3# Calm,#Gentle# 2# Dismissive,#
Nonchalant#

2#

Firm,#Strong# 2# Energetic,#
Effort#

2# Punctual,#Determined# 2# Sarcastic,#Smug# 2#

Stuck,#Tense# 2# Retaliatory,#
Defiant#

2# Mad# 1# Provoking# 1#

Abrupt# 1# Satisfied,#
Resolved#

2# Giving# 1# Soft# 1#

Certainty# 1# Fear# 1# Stuck# 1# Spontaneous# 1#
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Pilot 2: 

How do humans perceive intention in expressive movements? 

In the second iteration of the study, participants were asked to encode publicly 

available videos from the social networking site Youtube.com and animations of motion 

capture data. The Youtube videos feature children of different races and genders and span 

the valence-arousal space with expressions of joy, frustration, sadness, and anger. As 

previously discussed, videos of children were chosen for their freedom of expression and 

to minimize self-conscious, performative behaviors. Video subjects’ faces were obscured 

by a Gaussian blur to isolate emotional interpretations to those gleaned only from 

movements. This is a commonly utilized method in the neural sciences to reduce 

confounding variables in studies of the processing of visually witnessed body movement 

(Stekelenburg 2, Hadjikhani 1).  

Animations of motion capture data were captured from both a male and a female 

subject. Subjects were recorded in four different elicited states spanning the valence-

arousal space: joy, anger, contentment, and sadness. Emotional states were elicited by 

asking participants for topics that lead them to feel each of the four emotions. Subjects 

were shown 2 curated videos from Youtube.com focused on the topics selected by them. 

Then, they were asked a series of questions while being recorded: 

1. What happened in each of the videos? 

2. Which video was more impactful and why? 

3. What about this topic makes you feel this emotion? 

Occasionally, subjects were asked more personal follow-up questions in pursuit of the 

desired emotional state, freeing them from self-judgments that may have prohibited 
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expression in their movements. They were asked to report the valence and arousal of their 

mood during the interview to verify the elicitation of affect. Documentation of this process 

is available in Appendix C. 

Survey participants were asked to encode three out of twelve possible videos by 

noting start and end times for movements that they perceived to be expressive, classifying 

each movement with a Laban Effort and an emotional word, as well as noting involved 

body parts. For participants, the task of encoding a video with specific times is tedious and 

time-consuming, so a web application was developed to aid in the process. Screenshots of 

the application are available in Appendix D. 

The volunteers who participated in the study included: 

65 people with an average age of 33.4 years, 

38 women and 27 men, 

31 people with average 16 years of movement training and 34 with none,  

and 56 people from the United States and 9 people from other countries. 

Due to an indexing error in the application that could not be resolved in 

production, four out of eight motion capture animations had not been encoded by enough 

participants to provide reasonable results at the time of submission of this paper. These 

four videos were eliminated from the analysis process, but the four remaining motion 

capture videos include a Caucasian female in states of anger and joy and an Asian male in 

states of sadness and contentment. Thus, each of the four intended states of affect and 

multiple genders and races are included in the study. After data from these four videos 

was removed from the set, 556 time segments from eight videos remained. Samples of the 

cleaned data are available in Appendix E. 
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In order to assess the accuracy of Effort and affect classifications (when there 

could have reasonably been none to classify), we need to have agreed upon movements 

(samples) and a correct label (prediction). Because the problem of time segmentation was 

left open to participants, we must determine the most commonly identified segments and 

compare encodings that fall into those 

segments. We expect the precision of times 

identified by participants to be somewhat 

low. To address this issue, K-Means 

clustering of all segments was used to 

identify the most likely time segments for 

each video. Figure 5 presents a cluster plot 

for 7 segments for Video 1. A combination of human 

knowledge of the movements in the video and trial and 

error were used to determine K-Value for K-Means. Table 5 shows start and end times, 

sum of squares, and size of each of the 41 segment clusters. We can see that clusters range 

in their within and between sum of squares values, indicating that some clusters are more 

widely agreed upon than others. For example, Cluster 1 in Video 1 contains 14 segments 

with a WSS of about 21 and BSS of about 12,000. This indicates a fairly tight clustering 

of a relatively large number of points in our data set with a large distance between 

clusters, so we can say with confidence that Cluster 1 represents a set of segments most 

likely containing the same movement. Cluster 4 in Video 5 on the other hand, contains 

only 6 points with relatively high WSS of 160. This cluster is more likely to contain 

segments intended to describe different movements than Cluster 1 in Video 1. 

Figure'5:'Pilot'2'Clustering 
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Video% Cluster% Start#(s)% End#(s)% Total#SumSq% Within#SS% Between#SS% Size%

1% 1% 8.527142857% 9.563571429% 12384.01068% 20.88440714% 12108.06988% 14%

1% 2% 13.69857143% 15.56142857% 12384.01068% 48.95317143% 12108.06988% 7%

1% 3% 3.761333333% 7.052% 12384.01068% 86.28941333% 12108.06988% 15%

1% 4% 1.195% 2.744285714% 12384.01068# 30.33829286% 12108.06988% 14%

1% 5% 21.42833333% 26.32166667% 12384.01068% 33.46476667% 12108.06988% 6%

1% 6% 27.53% 28.75125% 12384.01068% 18.4852875% 12108.06988% 8%

1% 7% 2% 24% 12384.01068# 0% 12108.06988% 1%

1% 8% 18.24571429% 20.83642857% 12384.01068% 37.52546429% 12108.06988% 14%

2% 1% 3.978421053% 5.983157895% 5753.556755% 171.6292632% 5395.328676% 19%

2% 2% 4.21125% 21.4875% 5753.556755% 81.7500375% 5395.328676% 8%

2% 3% 13.36% 16.846# 5753.556755% 45.91952% 5395.328676% 5%

3% 1% 5.924545455% 9.791818182% 6866.774803% 62.09983636% 6525.520287% 11%

3% 2% 0.4% 19.82% 6866.774803% 0% 6525.520287% 1%

3% 3# 16.7712% 18.422% 6866.774803% 129.251064% 6525.520287% 25%

3% 4% 0.507272727# 2.428636364% 6866.774803% 73.05629545% 6525.520287% 22%

3% 5% 9.322% 15.438% 6866.774803% 76.84732% 6525.520287% 10%

4% 1% 1.67% 6.081428571% 5996.227576% 39.04797143% 5859.323195% 14%

4% 2% 19.47636364% 21.51454545% 5996.227576% 23.47692727% 5859.323195% 11%

4% 3% 9.653333333% 14.39833333% 5996.227576% 48.46741667% 5859.323195% 6%

4# 4% 16.82818182% 18.78545455% 5996.227576% 23.95523636% 5859.323195% 11%

4% 5% 0.592857143% 1.518571429% 5996.227576% 1.956828571% 5859.323195% 7%

5% 1% 2.3616% 3.9696% 19373.64317% 283.095632% 18373.40324# 25%

5% 2% 14.21% 17.05615385% 19373.64317% 162.2255077% 18373.40324% 13#

5% 3% 25.27275% 28.1435% 19373.64317% 394.5427075% 18373.40324% 40%

5% 4% 1.305% 18.85333333% 19373.64317% 160.3760833% 18373.40324% 6%

6% 1% 19.89384615% 21.08230769% 8581.58336% 121.3649385% 7516.166204% 13%

6# 2% 3.722% 6.136% 8581.58336% 319.1214% 7516.166204% 25%

6% 3% 25.14875% 27.15875% 8581.58336% 65.447975% 7516.166204% 8%

6% 4% 12.67894737% 15.25578947% 8581.58336% 559.4828421% 7516.166204% 19%

7% 1% 31.59230769% 34.54692308% 23075.74489% 38.95090769% 22353.27055% 13%

7% 2% 17.67666667% 21.43238095% 23075.74489% 184.8430476% 22353.27055% 21%

7% 3% 25.075% 32.155% 23075.74489% 60.0496% 22353.27055% 12%

7% 4% 7.309230769% 10.46884615% 23075.74489% 169.65985% 22353.27055% 26%
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Table'5:'Pilot'2'Cluster'Summary'

 
Each of the above clusters was analyzed for both Effort and affect classifications. 

Clusters containing only one point are excluded from all calculations except the total count of 

the observations of each Effort. Effort accuracy was calculated taking the mode as the correct 

Effort label. Agreed Instances for each Effort is a sum of the counts for that Effort when it 

was either the first or second mode in a cluster. Fraction observed is the fraction of all of the 

Effort labels for all clusters represented by each Effort. Average Accuracy is the mean of the 

accuracies for each cluster in which that Effort was the mode. Commonly confused Efforts 

are included in the table along with a confusion score that measures the degree to which the 

Efforts are mis/co-classified. 

'

Table'6:'Pilot'2'Effort'Summary'

 

7% 5% 16.5% 33.5% 23075.74489% 9% 22353.27055% 2%

7% 6% 12.551% 15.571% 23075.74489% 126.26176% 22353.27055% 20%

7% 7% 1.0915% 4.308% 23075.74489% 133.709175% 22353.27055% 20%

8% 1% 1.702% 3.364% 9870.188913% 8.1684# 9392.424006% 5%

8% 2% 29.62916667% 30.67083333% 9870.188913% 43.34998333% 9392.424006% 12%

8% 3% 2.505% 16.70857143% 9870.188913% 174.5085214% 9392.424006% 14%

8% 4% 19.20444444% 28.52444444# 9870.188913% 139.3806444% 9392.424006% 9%

8% 5% 15.51916667% 17.37666667% 9870.188913% 112.3573583% 9392.424006% 12%

# Slash# Press# Float# Flick# Glide# Dab# Punch# Wring#

Agreed#Instances# 25# 20# 50# 88# 60# 22# 36# 10#

Total#Instances# 55# 54# 87# 112# 89# 50# 49# 48#

Fraction#Agreed# 0.45# 0.37# 0.57# 0.79# 0.67# 0.44# 0.73# 0.21#

Fraction#Observed# 0.10# 0.10# 0.16# 0.21# 0.16# 0.09# 0.09# 0.09#

Commonly#Confused# Flick,#
Float#

Wring,
Glide#

Flick# Float# Dab# Glide# NA# Flick#

Confusion#Score# 6%# 12%# 14%# 10%# 10%# 20%# 3%# 15%#

Average#Accuracy# 0.45# 0.52# 0.43# 0.41# 0.41# 0.41# 0.80# 0.43#



! 73!

Table'7:'Pilot'2'Effort'Confusion'

Table 7 provides a complete view of the confusion between each Effort. Confusion 

scores represent the sum over all of the segments of the product of counts of the two Efforts 

in question, divided by the difference in counts between them, plus 1 for each segment. This 

sum is divided by the sum of this quantity over all of the Efforts to show the percentage of 

co- representation of each Effort pair. This metric provides scores that are higher with larger 

numbers of co-counts and lower for larger differences between the two counts. For example, 

if we observed 4 counts of Dab and 1 count of Flick in a single segment, our metric would be 

lower than if we saw 2 counts of Dab and 3 counts of Flick because the latter situation 

represents more confusion between the two categories despite having the same co-occuring 

count. On the other hand, an occurrence of 4 counts of Dab and 0 counts of Flick would 

result in a 0 confusion statistic for that segment.  

An interactive visualization tool was created to help viewers to understand the data. 

The visualization features the original videos from the survey juxtaposed with all of the 

timelines of segments submitted by survey participants with start and end times marked. A 

composite timeline shows start and end times for all segments identified by participants as 

well as clusters identified by K-Means. A scatter plot of End-time vs. Start-time helps users 

to visualize the clusters of segments. The user can play the video to see instantaneous Effort 

# Flick# Dab# Slash# Press# Punch# Float# Wring# Glide#

Flick# 0.68# 0.04# 0.04# 0.03# 0.01# 0.10# 0.05# 0.05#

Dab# 0.11# 0.38# 0.04# 0.08# 0.03# 0.10# 0.07# 0.20#

Slash# 0.06# 0.03# 0.71# 0.04# 0.02# 0.06# 0.04# 0.05#

Press# 0.08# 0.09# 0.07# 0.41# 0.02# 0.10# 0.12# 0.12#

Punch# 0.02# 0.02# 0.03# 0.02# 0.83# 0.03# 0.03# 0.02#

Float# 0.14# 0.06# 0.05# 0.05# 0.02# 0.56# 0.04# 0.09#

Wring# 0.15# 0.08# 0.06# 0.14# 0.03# 0.08# 0.36# 0.09#

Glide# 0.06# 0.10# 0.04# 0.06# 0.01# 0.09# 0.04# 0.60#
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modes and accuracies updated in real-time, along with individual participant’s Effort labels, 

emotions, and body parts at each time. Cluster Efforts, accuracies, and spreads are also 

updated with video play. Average participant-encoded valence and arousal, along with 

standard deviation of each, are displayed for each video to allow users to better understand 

the reliability with which participants were able to interpret emotions from the body 

movements in the videos. Figure 6 is a scaled down screen shot of the visualization. Full-

scale screen-shots are available in Appendix E and the interactive application is deployed at 

http://expressivemovements.com/results. 

 

!
Figure'6:'Pilot'2'Visualization'
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DISCUSSION 

Pilot 1 

 The results from the first study, in which 7 males and 7 females participated, 

indicate that individuals who are not dance-trained are, indeed, capable of perceiving 

Laban Efforts in each other’s movements with a reasonable amount of accuracy – 65.4%. 

Initial encodings of the long video clips are impressively accurate at 78.6%. Initial 

encoding of the short videos is less accurate at 52.2%, which is still greater than chance. 

There are no noticeable differences in accuracy of classification between males – 69% – 

and females – 68%. Differences between matching and multiple-choice survey accuracies 

are minimal with 74% and 79% respectively, indicating that multiple-choice formatting 

may have been slightly easier for participants to handle. Differences between trained and 

untrained observers are also minimal with 69% and 68% accuracy respectively, which 

suggests that these qualitative differences may be observed by both trained and novice 

movers. However, the Laban-trained participant demonstrates the highest accuracy of 

88%, which suggests that Laban training does improve one’s ability to accurately perceive 

Laban Efforts. 

Overall accuracy before the introduction is 71% and falls to 60% after the 

introduction. Values for the Spread statistic tend to be higher for the post-introduction 

encodings, indicating less agreement between participants. An error was made in the 

surveys such that the post-learning round of encoding was formatted with free-form labeling 

of the Efforts in both Survey 1 and Survey 2. This mistake does not factor into the statistics 

regarding survey question format because they are calculated with only the first round of 

encoding considered. This weakens conclusions that can be drawn regarding the differences 



! 76!

between encodings performed before and after and introduction to Laban, as any differences 

may be due to the change in question format rather than the introduction. Nevertheless, it is 

possible that intuitive perception of movement may be more reliable than thoughtful 

investigation; investigation may present opportunities to overthink and confuse oneself. 

This conjecture is supported by the theory that interpretation of movement occurs at least 

partly at the perceptual level of processing. In the second pilot study of this project, all of 

the Effort labeling is done by selecting an Effort from all eight possible choices to 

minimize the effects of strategic test-taking on results and because the videos are not 

composed of intentional performances of pre-planned Effort qualities. Because there is no 

introduction to the terms in the second pilot study, we will observe the ability of 

participants to identify movement qualities with some degree of reliability without any 

form of assistance. 

 In the data, we can also observe relationships between different Efforts and 

identify which Efforts might be most universally expressive or identifiable. Short video 

classifications are probably most comparable to classifications that might occur in the 

context of a conversation. Punch, Flick, and Press are most consistently identified with 

64%, 93%, and 71% accuracy in short videos before the introduction to Laban, so it is 

likely that they are most universally identified and interpreted. By looking at the second 

modes for each Effort, we can see that Wring, Float, and Glide seem to be most often 

confused with each other. Punch and Slash are also often confused, as are Dab and Press. 

Figure 10 is a graphical visualization of the relationships between the Efforts according to the 

perception of untrained observers, where the nodes represent Efforts and the edges between 
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them represent mistaken classifications between the Efforts. Edges are darker and wider for 

more commonly mistaken classifications. 

!

Figure'7:'Pilot'1'Effort'Results'Graph 

Regarding emotional interpretation of movements, there are a few qualities that 

seem to be consistently expressive and a few observable trends over the Efforts. Dab 

consistently seems to communicate apathy or hesitation. Glide communicates ease. Flick 

communicates playfulness or lightness. Slash and Punch communicate aggression. More 

broadly, Sustained movements and Light movements are interpreted generally as less 

aroused than Quick movements and Heavy movements, which is intuitive as Heavy and 

Quick movements require more energy. Notice that all of the Sustained movements and 

most of the Light movements contain the word calm. We can also glean that Heavy 

movements are more likely to be interpreted as negative than Light movements, which is 

also intuitive. For example, Glide, Float, and Flick contain mostly positive words, where 

Slash, Punch, and Press contain mostly negative words. 
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The emotional words in Table 4 were further analyzed for sentiment, keywords, 

and emotional content. Sentiment was calculated for the full set of emotional words for 

each Effort using the Natural Language Toolkit Library for Python and the Vader corpus. 

The average sentiment of each individually analyzed word in each set was also calculated 

using the same tools. Sentiments reported are scaled up so that they range from -5 to 5 for 

comparison with human-encoded valences in the second pilot study. The top three 

keywords and their scores were determined using a publicly available machine learning 

API called Indico to extract the most relevant words for the set of emotions listed for each 

Effort. The same API was used to estimate emotional content in each Effort class, 

assigning a score from 0 to 1 for Anger, Joy, Fear, Sadness, and Surprise. 

'

Table'8:'Pilot'1'Sentiment'Analysis'

 

#
Slash# Punch# Wring# Press# Flick# Dab# Float# Glide#

Top#Word# Anger# Anger# Annoyed# Dismissive# Happy# Apathy# Aloof# Calm#

Score# 0.68# 0.68# 0.30# 0.38# 0.68# 0.30# 0.78# 0.68#

Word#2# Frustrated# Frustrated# Luxuriant# Calm# Happy# Calm# Ease# Affectionate#

Score# 0.55# 0.55# 0.28# 0.22# 0.58# 0.26# 0.40# 0.24#

Word#3# Violent# Combative# Calm# Disappointed# Playful# Disinterested# Relaxation# Beguiling#

Score# 0.18# 0.17# 0.26# 0.22# 0.45# 0.24# 0.39# 0.24#

Overall#Sentiment# [4.96# [4.95# [4.46# 3.35# 4.66# [3.06# 4.89# 4.87#

Anger# 0.96# 0.97# 0.11# 0.15# 0.28# 0.63# 0.03# 0.04#

Joy# 0.00# 0.00# 0.04# 0.08# 0.24# 0.01# 0.32# 0.42#

Fear# 0.02# 0.02# 0.46# 0.52# 0.17# 0.28# 0.48# 0.23#

Sadness# 0.02# 0.01# 0.38# 0.20# 0.11# 0.09# 0.14# 0.08#

Surprise# 0.00# 0.00# 0.02# 0.05# 0.20# 0.00# 0.02# 0.24#

Mean#Sentiment# [1.17# [1.16# [0.38# 0.15# 0.51# [0.17# 0.83# 0.86#
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Our initial interpretations of the data for Pilot 1 are supported by this analysis, as 

we can see that Heavy Efforts tend to have more negative sentiment scores than Light 

Efforts, and Quick Efforts tend to have more extreme sentiment ratings than their 

Sustained counterparts. 

There are a few obvious limitations to the design of the first pilot study. First, there 

is only one performer in the videos. It is possible that each performer adds a particular 

emotional connotation to the performance of each Effort because of personal movement 

styles and biases. Second, most of the participants are to some degree familiar with the 

performer and her mode of expression. Participants have experience with the performer as 

a person, which may have biased their interpretations of expressive movements. Third, 

this iteration of the study uses video as the medium for analysis, but video data includes 

facial expressions, even sounds of breathing. The performer in the study tried to keep 

those fairly neutral, but humans are naturally and non-consciously expressive beings. This 

concern is addressed in the methods for the second pilot study, in which faces are 

obscured in all of the videos and motion capture data is animated without any 

gender/race/body-type identifying characteristics.  

Two more conceptual limitations of the first pilot study guided the design of the 

second pilot study: the handling of time in encoding the videos and the intentional, 

potentially unnatural performance of Laban Efforts in the videos. As for the former 

concern, videos of emotional expression are not simply collections of movements that 

might express a particular emotion. Rather, each video is a narrative in which different 

parts of the experience of the emotion are conveyed at different times by different 

movements. In order to assess the relationship between movements with specific Efforts 



! 80!

and their emotional interpretation, we must consider how these individual movement 

building blocks are combined into an expressive movement sequence. This presents the 

problem of segmentation: how do we divide time to interpret individual movements in the 

context of the overall narrative and how does each time piece fit together? If we are to do 

this with a technological system, how do we teach the system to understand the context of 

the movement or even its beginning and end? Because the time segmentation problem is 

so significant in interpreting a person’s movement in context, as stipulated by both 

choreographic practice and modern design frameworks, the second pilot study in this 

thesis considers more carefully the segmentation of time by subjects. 

As mentioned above, the first pilot study of this research aims to establish whether 

or not people perceive Laban Efforts in each other’s movements. In order to answer this 

question, it was necessary that the Laban Efforts exist in the videos shown to participants. 

The best way to ensure this was to explicitly perform the Efforts in both free-form 

movements and in short gestures of roughly the same spatial pathways. We observe 

convincing evidence that humans can accurately perceive Laban Efforts when they are 

present in movements, but we have not yet established that this is relevant to non-dance, 

conversational expressive movement. In order to explore this, we need to limit ourselves 

to the movements of people expressing themselves freely and authentically, which is the 

focus of the second pilot study in this research. 

Pilot 2 

The results from the second pilot study support the hypothesis that untrained 

observers can identify Laban Efforts with greater than chance accuracy in expressive and 

conversational movements (unintentional performance of Efforts). The average accuracies of 
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all of the Efforts are above 40% (out of eight possible choices), which are well above chance 

accuracies. As we observed in the first pilot study, certain Efforts appear to be more 

recognizable than others. Slash, Punch, and Press have average accuracies of 0.45, 0.52, and 

0.8. Float, Flick, and Glide have the highest Fraction of Agreement with 0.57, 0.79, and 0.67 

respectively. The most commonly observed Effort is Flick, which accounts for 21% of the 

assigned labels. In this pilot study, we see confusion between Float and Glide, Dab and Flick, 

Wring and Press, and Slash and Punch.  

Again, sentiment and emotion were analyzed for the words provided to describe 

movements in each cluster using the method described in the discussion of the first pilot 

study. As you can see in Table 9, Slash and Punch tend to communicate anger, which has a 

high arousal level and a very negative valence. Press and Wring indicated struggle, as 

reflected in the significantly negative sentiment ratings for those two Efforts. Flick, Float, 

and Glide tend to be happy, excited, and wonderment; each has a positive sentiment rating.  

'

Table'9:''Pilot'2'Sentiment'Analysis'

 

#
Slash# Press# Float# Flick# Glide# Dab# Punch# Wring#

Emotion# anger,#
resignation,#

rage#

defensive,#
disbelief,#

resignation,#
fear#

nervous,#
contented,#

wonder,#neutral,#
caring,#anger#

excitement,#joy,#
frustrated,#

happy,#curious#

impatient,#
bored,#
happy,#

confused,#
sad#

sad,#
melow,#
urgency#

anger,#
resignati
on,#mad#

#
nervous,#
neutral,#

impatience#

Overall#
Sentiment#

[4.81# [1.78# 0.57# 0.76# 0.27# [1.61# [3.52# [4.84#

Anger# 0.81# 0.08# 0.08# 0.39# 0.28# 0.04# 0.79# 0.02#

Joy# 0.01# 0.29# 0.29# 0.21# 0.22# 0.03# 0.05# 0.00#

Fear# 0.13# 0.49# 0.48# 0.26# 0.35# 0.88# 0.07# 0.95#

Sadness# 0.04# 0.07# 0.09# 0.05# 0.09# 0.04# 0.05# 0.02#

Surprise# 0.01# 0.07# 0.05# 0.10# 0.06# 0.01# 0.04# 0.00#
Average#
Sentiment#

[1.81# [0.18#
0.37# 0.21# [0.26# [1.32# [1.73#

[1.27#
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In the latter four videos, which show animations of motion capture data collected for 

two different participants, we can compare participants’ interpretation of emotional valence 

and arousal to the self-reported values. We can see that participants are generally in the 

correct quartile of the valence-arousal space, though their estimates for arousal tend to be less 

extreme than the self-reported values. The standard deviations of around 1.5 for each value 

indicated that around 68% of the estimates provided by participants fall within 1.5 of the 

mean value, which is a fairly strong level of agreement amongst parties. This suggests that 

people can assess emotional interpretation with some degree of accuracy and consistency 

from only body movements. These physical cues, coupled with facial expressions, contextual 

clues, and vocal behavior could be strong enough indicators for computers to assess affect 

quite successfully if the modalities could be well integrated. 

'

Table'10:'Subject'Valence'and'Arousal 

In the second pilot study, we observe a much wider spread of the Efforts for each 

cluster than we saw in the spread of the Efforts for the intentionally performed Efforts. We 

see mostly lower accuracies. This could be because the Efforts are not as strong or as clearly 

displayed in conversation. It could be that the Efforts are not the most useful taxonomy for 

#
Arousal# Stan.#Dev.# Valence# Stan.#Dev.# Emotion# Emotion#

Subject# 10.00#
#

[5.00#
#

Angry# Frustrated#

Participants# 6.76# 1.40# [3.21# 1.81# Anger# Frustration#

Subject# 6.00#
#

0.00#
#

Hope# Content#

Participants# 3.65# 1.65# 0.96# 1.62# Contented# Nonchalance#

Subject# 10.00#
#

5.00#
#

Happy# Excited#

Participants# 4.73# 2.48# 0.26# 1.86# Happy# Impatience#

Subject# 0.00#
#

[1.50#
#

Depressing# Depressed#

Participants# 3.44# 1.75# [0.99# 1.48# Neutral# Boredom#
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classifying movement quality in conversation between non-dancers. On the other hand, this 

could be the result of confusion about time segmentation and the survey application.  

In this iteration of the study, the openness of the time variable could have led to 

mislabeled Efforts. Throughout the active survey period, there were instances of poorly 

loaded videos, incorrectly sized videos (so that timelines did not match up) and trouble with 

saving data (so that users might have submitted data after a different video had already 

loaded). Considerable care was taken to ensure that video data was correctly matched with its 

video or discarded, but there may still be errors leading to contaminated clusters and lower 

Effort accuracy. It is also possible that too few clusters were defined for some of the videos. 

The motivation for creating fewer larger clusters is to assess agreement amongst a larger pool 

of data, but it is possible that different segments within a cluster contain different movements 

of different Efforts. If clusters are not pure, the decrease in accuracy from the first pilot study 

to the second may not be the result of an absence of the Efforts in conversational gesturing. 

Future studies may reduce confusion surrounding time segmentation to draw more firmly 

grounded conclusions regarding agreement of Effort classification by pre-segmenting 

timelines for participants. This practice would ensure that participants are referring to the 

same movements. 

Other factors distinguishing the two pilot studies are the format of questions and the 

presence/absence of an introduction to the Laban terminology. It is possible that unfamiliar 

vocabulary may have obscured participants’ abilities to recognize the movement qualities in 

question in the second study. It is also possible that the use of multiple-choice and matching 

formatted questions in the first pilot study artificially augmented participants’ abilities to 
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classify Laban Efforts. Future studies should attempt to address these concerns in the context 

of conversational movement. 

In Pilot 2 as in Pilot 1, we are again using videos of a limited number of people 

moving. We attempt to include people of different racial, gender, and age identities to 

account for much of the possible group-by-group behavioral differences, but we still only 

have 6 people included in the videos of this study. It is possible that these particular 

individuals have their own unique distribution of qualities with which they move that include 

only some of the Effort qualities. It is also possible that the people in the videos are moving 

with more exaggerated Effort qualities than the average individual.  

In the motion capture videos, specifically, we feature two people in elicited states of 

affect. Because we asked the subjects for topics related to feelings, they may have been 

aware of the goal to elicit affect, which may have led to artificial displays of affect or to 

inaccurate self-reporting of emotional state. If the subjects were in fact not in affected states, 

perhaps their movements were less expressive than they otherwise might have been. Perhaps, 

future studies can measure arousal through physical measurements of skin capacitance to 

verify the emotional state of subjects in hopes of better sketching out the relationship 

between movement quality and emotional state. 

Up to this point, we have not discussed the possibility of augmenting or trimming 

down Laban’s Efforts to create a new taxonomy of movement qualities for the purposes of 

interpreting intention or designing human-computer interfaces. Throughout the survey 

process, many participants asked why they could not label a movement with a different 

quality. Bounce is an example of a quality that is not well accounted for in the Laban Effort 

System. Nor have we discussed the Laban Spell, Passion, or Vision Drives, which 
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incorporate the Flow Affinity into new qualities. Future studies can experiment with 

introducing new qualities to the taxonomy and removing those that seem less relevant. This 

will compromise the structure of the Laban Effort system with its polarities in four Affinities, 

but perhaps the opening of that space will make way for a new framework for movement 

quality analysis. 
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CONCLUSIONS AND FUTURE WORK 

 In this thesis, we have examined the use of gesture in human-computer interaction 

from past to present to future. We have established that movement is an essential modality 

for communication between humans, and we have presented applications for which a better 

understanding of this modality could be useful in interacting with computers. We have 

established that current and past movement-based human-computer interfaces rely mostly on 

shape and spatial referencing, which is in line with the linguistic approach to interpreting 

body movements as units of language. Moreover, we have observed that current gestural 

interfaces rely on the same ideas that have prevailed in human-computer interaction since the 

1970’s and 1980’s: direct manipulation and pointers. As the field of gestural interface design 

struggles to invent new, significant gestures with maximum intuitiveness and minimum 

fatigue, we propose the inclusion of movement quality in the gestural system design toolkit. 

Researchers, especially in the field of dance, have urged the exploration of movement 

quality as a mechanism for interpreting meaning and intention from physical body 

movement. Laban’s Effort system provides a framework for understanding and classifying 

movement qualities that could be expressive, and therefore, could be useful as both a medium 

for input and output in human-computer interaction. The goal of this thesis is to explore the 

potential use and interpretation of these Efforts for human-computer interaction. 

Through a series of two pilot studies, we have investigated the perception of Laban 

Efforts by the untrained observer in different contexts. We aimed to shed light on several key 

questions facing the field of qualitative gesture analysis: 
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1. Can untrained observers identify different movement qualities, in particular the 

Laban Efforts? 

2. Can untrained observers identify the Laban Efforts in conversational movement 

and do people move with these qualities in communication of emotional experience 

and intention? 

3. Can we establish relationships between the Laban Efforts and different emotional 

content for use in human-computer interaction and interaction design? 

The first pilot study addressed the first and third questions. 14 participants classified 

videos of intentionally performed Laban qualities with Efforts and emotional interpretations. 

Participants were able to achieve a 65% rate of accuracy on Effort encodings overall, which 

is much greater than chance, so we conclude that untrained observers can identify Laban 

Efforts. Emotional interpretations of each Effort proved to have consistency amongst 

participants, as well as strong sentiment ratings. It is clear that at the very least, movement 

quality can play a role in the interpretation of movements for emotion or intention, and that 

relationships can be drawn between particular qualities and interpretations. 

The second pilot study addressed the second and third questions. An application was 

developed to aid participants in segmenting the time on silent Youtube videos of emotionally 

affected children (with faces blurred) and motion capture animations of emotionally affected 

adults. By clustering time segments with the K-Means algorithm, we were able to identify 

movements consistently picked out by participants. We analyzed Effort and emotional 

encodings for these segments to find an overall average Effort accuracy (in this case 

agreement) of 48%, which is not as high as our accuracy in the first study, but is again 

significantly greater than chance. Again, we found consistency in emotional interpretations 
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of segments and strong sentiment scores. Though these results may have been compromised 

by issues in data collection, we conclude that untrained observers and movers most likely can 

perceive and perform the Effort qualities in emotionally expressive movements. 

Immediate applications of this research might include new implementations of 

existing gestural interfaces– like that of the Hololens– that are sensitive to the quality with 

which gestures are performed. Machine learning algorithms like neural networks and Support 

Vector Machines can be trained to detect these qualities, and responses elicited from gestural 

systems can be designed according to the Effort-Affect relationships outlined in this thesis. 

For example, in a Hololens game that involves shooting space aliens, users could fire larger 

weapons in response to Slashes than in response to Dabs. In the long term, systems that sense 

and respond to users’ emotions can incorporate a more sophisticated interpretation of body 

movements as indicators of affect. These systems might include art installations, social 

robots and virtual characters, and smart homes (including those designed in the assistive 

technology division). In many of these systems, social characters can be designed to better 

communicate their emotional states by moving with different qualities in response. 

Future studies will attempt to synthesize the two pilot approaches, using pre-

segmented video of people engaged in natural expression of emotion to investigate 

movement quality in the context of conversation and to simplify user experience and data 

analysis. Larger sample sizes will improve statistical power of future studies, which will be 

designed with the insights gleaned from this thesis work. The elimination and introduction of 

new qualities to the taxonomy will explore the possibility of developing an even more 

powerful framework, informed by the work of Laban and his contemporaries in the field of 

dance. 
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Beyond that, it will be necessary to implement gestural systems that detect and react 

to specific movement qualities as informed by this research on emotional interpretation for 

user testing. Many choreographers will agree that the design of movements through purely 

cerebral methods often leads to disembodied experiences. This research is only the first step 

toward creating a powerful design framework for gestural interfaces that incorporates 

movement quality and knowledge from the field of dance to achieve more than typical 

interfaces that rely on pointing, stretching, and swiping. 
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APPENDIX A: PILOT 1 SURVEY MATERIALS 
Date:!
Participant!name/age:!
Gender!identification:!
!

Movement!Quality!Pilot!Survey!#1!
!

Instructions:!Watch!each!video!clip!only!1Q2!times.!Answer!questions!quickly!and!
instinctually.!Do!not!revise!your!answer!once!you!have!completed!a!question.!
!
1.!Do!you!have!any!prior!knowledge!of!Laban!Movement!Analysis?!
!
2.!Have!you!studied!dance!or!movement!in!a!formal!way?!If!so,!for!how!long?!

!
3.!Watch!the!videos!in!the!Long6Videos!folder.!Match!the!clips!to!the!appropriate!
movement!quality!(Efforts)!and!write!any!emotional!words!that!come!to!mind.!
!
Effort! Video! Emotional!word! Emotional!word!
Dab! ! ! !
Glide! ! ! !
Press! ! ! !
Slash! ! ! !
Wring! ! ! !
Flick! ! ! !
Float! ! ! !
Punch! ! ! !
!
4.!Watch!the!videos!in!the!Short6Videos!folder.!Match!the!clips!to!the!appropriate!
movement!quality!(Efforts)!and!write!any!emotional!words!that!come!to!mind.!
!
Effort! Video! Emotional!word! Emotional!word!
Dab! ! ! !
Glide! ! ! !
Press! ! ! !
Slash! ! ! !
Wring! ! ! !
Flick! ! ! !
Float! ! ! !
Punch! ! ! !
!
!
!
!
5.!Watch!the!video!entitled!Intro6To6Laban.!Make!note!of!the!elements!Time,!Space,!and!
Weight!as!they!correspond!to!each!of!the!Efforts!outlined!in!the!key!below.!
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!
Effort! Time! Space! Weight!
Dab! Quick6 Direct6 Light6
Glide! Sustained6 Direct6 Light6
Press! Sustained6 Direct6 Heavy6
Slash! Quick6 Indirect6 Heavy6
Wring! Sustained6 Indirect6 Heavy6
Flick! Quick6 Indirect6 Light6
Float! Sustained6 Indirect6 Light6
Punch! Quick6 Direct6 Heavy6
!
6.!Watch!the!videos!in!the!Long6Videos!folder.!Name!each!clip’s!Effort!from!the!above!list!
using!the!information!about!Time,!Space,!and!Weight.!
Video! Time!

(Quick/Sustained)!
Space!
(Direct/Indirect)!

Weight!
(Heavy/Light)!

Effort!

A! ! ! ! !
B! ! ! ! !
C! ! ! ! !
D! ! ! ! !
E! ! ! ! !
F! ! ! ! !
G! ! ! ! !
H! ! ! ! !
!
7.!Watch!the!videos!in!the!Short6Videos!folder.!Name!each!clip’s!Effort!from!the!above!
list!using!the!information!about!Time,!Space,!and!Weight.!
Video! Time!

(Quick/Sustained)!
Space!
(Direct/Indirect)!

Weight!
(Heavy/Light)!

Effort!

A! ! ! ! !
B! ! ! ! !
C! ! ! ! !
D! ! ! ! !
E! ! ! ! !
F! ! ! ! !
G! ! ! ! !
H! ! ! ! !
!
8.!Watch!the!videos!in!the!Emotional6Videos!folder.!Give!each!video!a!title!and!write!
down!any!of!the!above!Efforts!that!you!see!in!each!one.!
Video! Title! Efforts!
A! ! !
B! ! !
C! ! !
!



! 92!

Date:!
Participant!name/age:!
Gender!identification:!
!

Movement!Quality!Pilot!Survey!#2!
!

Instructions:!Watch!each!video!clip!only!1Q2!times.!Answer!questions!quickly!and!
instinctually.!Do!not!revise!your!answer!once!you!have!completed!a!question.!
!
1.!Do!you!have!any!prior!knowledge!of!Laban!Movement!Analysis?!
!
2.!Have!you!studied!dance!or!movement!in!a!formal!way?!If!so,!for!how!long?!
!
3.!Watch!the!videos!in!the!Long6Videos!folder.!Choose!the!Effort!that!best!matches!the!
clip!(by!highlighting,!underlining,!or!removing!others).!Write!any!emotional!words!that!
might!have!been!expressed!by!the!mover.!
!
Clip! Effort!Options! Emotional!word! Emotional!word!
A! Wring!!!!!Float!!!!!Flick! ! !
B! Punch!!!Glide!!!!Slash! ! !
C! Float!!!!Dab!!!!Press! ! !
D! Float!!!!Dab!!!!Wring! ! !
E! Flick!!!!Glide!!!!Punch! ! !
F! Flick!!!!Glide!!!Slash! ! !
G! Wring!!!Press!!!Slash! ! !
H! Dab!!!!Punch!!!Glide! ! !
!
4.!Watch!the!videos!in!the!Short6Videos!folder.!Choose!the!Effort!that!best!matches!the!
clip,!and!write!emotional!words!that!might!have!been!expressed!by!the!mover.!
Clip! Effort!Options! Emotional!word! Emotional!word!
A! Wring!!!!!Dab!!!!Press! ! !
B! Punch!!!!Glide!!!!Slash! ! !
C! Float!!!!Wring!!!Press! ! !
D! Float!!!!Flick!!!!Punch! ! !
E! Flick!!!!Glide!!!!Punch! ! !
F! Press!!!!Glide!!!!Slash! ! !
G! Wring!!!!Float!!!!Slash! ! !
H! Wring!!!!Slash!!!!Punch! ! !
!
!
!
5.!Watch!the!video!entitled!Intro6To6Laban.!Make!note!of!the!elements!Time,!Space,!and!
Weight!as!they!correspond!to!each!of!the!Efforts!outlined!in!the!key!below.!
!
Effort! Time! Space! Weight!
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Dab! Quick6 Direct6 Light6
Glide! Sustained6 Direct6 Light6
Press! Sustained6 Direct6 Heavy6
Slash! Quick6 Indirect6 Heavy6
Wring! Sustained6 Indirect6 Heavy6
Flick! Quick6 Indirect6 Light6
Float! Sustained6 Indirect6 Light6
Punch! Quick6 Direct6 Heavy6
!
6.!Watch!the!videos!in!the!Long6Videos!folder.!Name!each!clip’s!Effort!from!the!above!list!
using!the!information!about!Time,!Space,!and!Weight.!
Video! Time!

(Quick/Sustained)!
Space!
(Direct/Indirect)!

Weight!
(Heavy/Light)!

Effort!

A! ! ! ! !
B! ! ! ! !
C! ! ! ! !
D! ! ! ! !
E! ! ! ! !
F! ! ! ! !
G! ! ! ! !
H! ! ! ! !
!
7.!Watch!the!videos!in!the!Short6Videos!folder.!Name!each!clip’s!Effort!from!the!above!
list!using!the!information!about!Time,!Space,!and!Weight.!
Video! Time!

(Quick/Sustained)!
Space!
(Direct/Indirect)!

Weight!
(Heavy/Light)!

Effort!

A! ! ! ! !
B! ! ! ! !
C! ! ! ! !
D! ! ! ! !
E! ! ! ! !
F! ! ! ! !
G! ! ! ! !
H! ! ! ! !
!
8.!Watch!the!videos!in!the!Emotional6Videos!folder.!Give!each!video!a!title!and!write!
down!any!of!the!above!Efforts!that!you!see!in!each!one.!
Video! Title! Efforts!
A! ! !
B! ! !
C! ! !
!
!
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APPENDIX B: PILOT 1 COMPLETE RESULTS 
 

Table'10:'Pilot'1'Complete'Organized'Results'

!
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Table'12:'Pilot'1'Complete'Emotional'Words'List'

!
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Table'13:'Pilot'1'Raw'Data'

!



! 97!

APPENDIX C: PILOT 2 SURVEY DEVELOPMENT 
 

Images from motion capture session 11/9/2016 at NYU MAGNET:  

 
 
Records on affect elicitation during motion capture session: 

 
Table'14:'Motion'Capture'Record 

!!
Male Non-
Dancer Arousal Valence Emotion Emotion Video 

Emotion content 6 0 hope content https://www.youtube.com/watch?v=Dha6FzM7afc 

Topic stories !! !! !! !! https://www.youtube.com/watch?v=hbmdOzWgyXU 

Emotion joyful 7 2.5 excitement nostalgia https://www.youtube.com/watch?v=rKUD4GUWrLU 

Topic games !! !! !! !! https://www.youtube.com/watch?v=nyeZ8khSEC0 

Emotion sad 0 -1.5 depressing depressing https://www.youtube.com/watch?v=rzmOI7fTALY 

Topic housewor
k !! !! !! !! https://www.youtube.com/watch?v=GfJiFBqIjPE 

Emotion angry 7 -2.5 angry depressed https://www.youtube.com/watch?v=Bf2JfUoXWLU 

Topic tuition !! !! !! !! https://www.youtube.com/watch?v=5-IuFSt5xWA 

!!
Female 
Dancer Arousal Valence Emotion Emotion Video 

Emotion content 3 3 calm serene https://www.youtube.com/watch?v=9o3cvFFUNWc 

Topic nature !! !! !! !! https://www.youtube.com/watch?v=XhHCcH7hyqo 

Emotion joyful 10 5 happy excited https://www.youtube.com/watch?v=2J5GzHoKl1Q 

Topic dogs !! !! love awesome https://www.youtube.com/watch?v=KBluUZ4NnZg 

Emotion depressin
g 2 -3 sad emotional https://www.youtube.com/watch?v=qZMX6H6YY1M 

Topic ungrateful 
children !! !! shitty !! https://www.youtube.com/watch?v=958EZG0Tnlg 

Emotion angry 10 -5 frustrated confused https://www.youtube.com/watch?v=WhsSzIS84ks 

Topic donald 
trump !! !! angry upset https://www.youtube.com/watch?v=erKZ38iB-Gc 

Figure'8:'In'the'Studio Figure'9:'Mocap'Rendering 
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APPENDIX D: PILOT 2 SURVEY MATERIALS 
 

!
Figure'10:'Web'Application'Home'Page'

!
Figure'11:'Web'Application'Survey'Page 

 
Code is available at https://github.com/CaitlinSikora/MovementStudies. 
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APPENDIX E: PILOT 2 SURVEY COMPLETE RESULTS 

 
 
 

Table'15:'Sample'of'Pilot'2'Data 
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Table'13:'Pilot'2'Cluster'Data'
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Table'14:'Pilot'2'Emotional'Data 
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  Figure'12:''Pilot'2'Visualization 
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APPENDIX F: HUMAN SUBJECTS RESEARCH CERTIFICATION 
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